首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
有30个零件,其中20个一等品,10个二等品,随机地取3个,安装在一台设备上,若3个零件中有i(i=0,1,2,3)个二等品,则该设备的使用寿命(单位:年)服从参数为λ=i+1的指数分布,试求:(1)设备寿命超过1年的概率;(2)若已知在该设备上的两个零件
有30个零件,其中20个一等品,10个二等品,随机地取3个,安装在一台设备上,若3个零件中有i(i=0,1,2,3)个二等品,则该设备的使用寿命(单位:年)服从参数为λ=i+1的指数分布,试求:(1)设备寿命超过1年的概率;(2)若已知在该设备上的两个零件
admin
2019-06-28
43
问题
有30个零件,其中20个一等品,10个二等品,随机地取3个,安装在一台设备上,若3个零件中有i(i=0,1,2,3)个二等品,则该设备的使用寿命(单位:年)服从参数为λ=i+1的指数分布,试求:(1)设备寿命超过1年的概率;(2)若已知在该设备上的两个零件安装后使用寿命超过1年,则安装在该设备上的3个零件均为二等品的概率.
选项
答案
设B
i
表示“3个零件中有i个是二等品”(i=0,1,2,3),令A表示“设备的寿命超过1年”,以X表示“设备的使用寿命”.
解析
设备的使用寿命受所取零件中所含二等品的个数影响,所含二等品的个数有四种情况,可以设B
i
表示“3个零件中有i(i=0,1,2,3)个是二等品”,作为完备事件组,利用全概率公式和贝叶斯公式计算所求概率.
(1)
P(A|B
0
)=P{X>1>B
0
}=∫
1
+∞
edx=e
-1
.
同理可求P(A|B
1
)=e
-2
,P(A|B
2
)=e
-3
,P(A|B
3
)=e
-4
.
从而P(A)=0.281×e
-1
+0.222×e
-2
+0.222×e
-3
+0.275×e
-4
≈0.1495.
(2)由贝叶斯公式,所求概率为P(B
3
|A)=
≈0.034.
转载请注明原文地址:https://kaotiyun.com/show/CaV4777K
0
考研数学二
相关试题推荐
设曲线y=f(x),其中y=f(x)是可导函数,且f(x)>0。已知曲线yf(x)与直线y=0,x=1及x=t(t>1)所围成的曲边梯形绕x轴旋转一周所得立体的体积值是该曲边梯形面积值的πt倍,求该曲线方程。
设e<a<b,证明:a2<<b2。
假设函数f(x)和g(x)在[a,b]上存在二阶导数,并且g’’(x)≠0,f(a)=f(b)=g(a)=g(b)=0,试证:在开区间(a,b)内g(x)≠0;
已知齐次线性方程组有通解k1(2,一1,0,1)T+k2(3,2,1,0)T,则方程组的通解是__________。
设。已知线性方程组Ax=b存在两个不同的解。求方程组Ax=b的通解。
设三阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=一2,α1=(1,一1,1)T是A的属于特征值λ1的一个特征向量,记B=A5一4A3+E,其中E为三阶单位矩阵。验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量;
设平面区域D由曲线(0≤t≤2π)与x轴围成.计算二重积分
求不定积分
设y=f(x)是区间[0,1]上的任一非负连续函数。(Ⅰ)试证存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积,等于在区间[x0,1]上以y=f(x)为曲边的梯形面积。(Ⅱ)又设f(x)在区间(0,1)内可导,且f’(x)>-2
设f(x)=x2sinx,求f(n)(0)
随机试题
童工和未成年工的关系是()
组成蛋白质的碱性氨基酸有几种
单向沟通和双向沟通进行比较表明()
弗雷德里克·温斯洛·泰勒在他的主要著作《科学管理原理》(1911年)中提出了科学管理理论。请简述科学管理理论的主要内容。
职业道德意识是指从业人员在职业生活中对事物进行善恶判断所引起的内心体验。()
经营者能够证明所达成的协议属于特定情形的,可被《反垄断法》豁免。这些情形包括()。
[2014年]设函数f(x)=arctanx,若f(x)=xf'(ξ),则=().
A、Areceptionist.B、Asecretary.C、Anurse.D、Atraveller.A男士说他想订一个房间,周二入住,女士问他打算什么时候离开。由此可以推断,女士是个前台接待员。
Englishmagazineswilloftenadvertisethemselvesasbeingdevotedtosportandleisure.Thisis【C1】______fortotheEnglish
Ifyouareayoungcollegestudent,mostofyourconcernsaboutyourhealthandhappinessinlifeareprobablyfocusedonthepr
最新回复
(
0
)