首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
有30个零件,其中20个一等品,10个二等品,随机地取3个,安装在一台设备上,若3个零件中有i(i=0,1,2,3)个二等品,则该设备的使用寿命(单位:年)服从参数为λ=i+1的指数分布,试求:(1)设备寿命超过1年的概率;(2)若已知在该设备上的两个零件
有30个零件,其中20个一等品,10个二等品,随机地取3个,安装在一台设备上,若3个零件中有i(i=0,1,2,3)个二等品,则该设备的使用寿命(单位:年)服从参数为λ=i+1的指数分布,试求:(1)设备寿命超过1年的概率;(2)若已知在该设备上的两个零件
admin
2019-06-28
81
问题
有30个零件,其中20个一等品,10个二等品,随机地取3个,安装在一台设备上,若3个零件中有i(i=0,1,2,3)个二等品,则该设备的使用寿命(单位:年)服从参数为λ=i+1的指数分布,试求:(1)设备寿命超过1年的概率;(2)若已知在该设备上的两个零件安装后使用寿命超过1年,则安装在该设备上的3个零件均为二等品的概率.
选项
答案
设B
i
表示“3个零件中有i个是二等品”(i=0,1,2,3),令A表示“设备的寿命超过1年”,以X表示“设备的使用寿命”.
解析
设备的使用寿命受所取零件中所含二等品的个数影响,所含二等品的个数有四种情况,可以设B
i
表示“3个零件中有i(i=0,1,2,3)个是二等品”,作为完备事件组,利用全概率公式和贝叶斯公式计算所求概率.
(1)
P(A|B
0
)=P{X>1>B
0
}=∫
1
+∞
edx=e
-1
.
同理可求P(A|B
1
)=e
-2
,P(A|B
2
)=e
-3
,P(A|B
3
)=e
-4
.
从而P(A)=0.281×e
-1
+0.222×e
-2
+0.222×e
-3
+0.275×e
-4
≈0.1495.
(2)由贝叶斯公式,所求概率为P(B
3
|A)=
≈0.034.
转载请注明原文地址:https://kaotiyun.com/show/CaV4777K
0
考研数学二
相关试题推荐
设函数f(x,y)可微,且对任意x,y都有<0,则使不等式f(x1,y1)<f(x2,y2)成立的一个充分条件是()
已知函数f(x)=。求a的值;
椭球面S1是椭圆=1绕x轴旋转一周而成,圆锥面S2是过点(4,0)且与椭圆=1相切的直线绕x轴旋转一周而成。求S1及S2的方程;
假设函数f(x)和g(x)在[a,b]上存在二阶导数,并且g’’(x)≠0,f(a)=f(b)=g(a)=g(b)=0,试证:在开区间(a,b)内至少存在一点ξ,。
计算二重积分I=ydxdy,其中D是由x轴,y轴与曲线=1所围成的区域,a>0,b>0。
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记证明二次型f对应的矩阵为2ααT+ββT;
设z=f(t,et)dt,其中f是二元连续函数,则dz=________.
设三阶实对称矩阵A的各行元素之和均为3,向量α1=(一1,2,一1)T,α2=(0,一1,1)T是线性方程组Ax=0的两个解。求正交矩阵Q和对角矩阵,使得QTAQ=。
函数f(x)=ln|(x-1)(x-2)(x-3)|的驻点个数为()
已知函数f(x)=∫x1dt,求f(x)零点的个数。
随机试题
律师论辩的思维方法。
原发性血小板减少陛紫癜患者,应用糖皮质激素治疗多长时间未见效,才考虑切脾()(1994年)
多毛细胞白血病特征性细胞化学染色为
A、过敏性紫癜肾炎B、IgA肾病C、急性链球菌感染后肾小球肾炎D、原发性小血管炎肾损害E、狼疮性肾炎患者,女性,13岁,3周前始出现双下肢对称性出血性皮疹,浮肿、尿少、肉眼血尿1周,伴腹痛、黑粪,肾活检病理为系膜增生性肾小
下列属于企业会计档案的有()。
甲图书肯像公司在某经营期间共销售1万册图书、2万套DVD音像制品,转让两项外观设计专利,出售一辆自己使用过的小轿车。根据《营业税暂行条例》,这些经营业务属于营业税征税范围的是()。
绩效指标分析的基本工具有()。
设X1,X2,…,Xn(n>2)是来自总体X~N(0,1)的简单随机样本,记Yi=Xi一(i=1,2,…,n).求:Cov(Y1,Yn).
设D=求-A13-A23+2A33+A43.
Withunemploymenttidethroughouttherichworld,moreandmoreyoungpeopleareseekinginternships.Manyfirms,nervousabout
最新回复
(
0
)