首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α=(1,0,1)T,A=ααT,若B=(kE+A)*是正定矩阵,则k的取值范围是__________。
设α=(1,0,1)T,A=ααT,若B=(kE+A)*是正定矩阵,则k的取值范围是__________。
admin
2019-01-23
44
问题
设α=(1,0,1)
T
,A=αα
T
,若B=(kE+A)
*
是正定矩阵,则k的取值范围是__________。
选项
答案
k>0或k<一2
解析
矩阵A=αα
T
的秩为1,且tr(A)=α
T
α
T
=2,故矩阵A的特征值是2,0,0,从而矩阵kE+A的特征值是k+2,k,k。矩阵B=(kE+A)
*
=|kE+A|(kE+A)
-1
的特征值是k
2
,k(k+2),k(k+2)。
矩阵B正定的充要条件是特征值均大于零,即k
2
>0且k(k+2)>0,解得k>0或k<一2。
转载请注明原文地址:https://kaotiyun.com/show/CmP4777K
0
考研数学三
相关试题推荐
已知A是3阶实对称矩阵,特征值是1,2,一1,相应的特征向量依次为α1=(a一1,1,1)T,α2=(4,一a,1)T,α3=(a,2,6)T,A*是A的伴随矩阵,试求齐次方程组(A*+E)x=0的基础解系。
设A是m×n矩阵,对矩阵A作初等行变换得到矩阵B,证明:矩阵A的列向量与矩阵B相应的列向量有相同的线性相关性.
已知3维列向量β不能由α1=能否相似对角化?若能则求出可逆矩阵P使P—1AP=A.若不能则说明理由。
知A、B均是三阶矩阵,将A中第3行的一2倍加到第2行得矩阵A1,将B中第一列和第2列对换得到B1,又A1B1=,则AB=__________.
已知α1,α2,α3,α4是3维列向量,矩阵A=[α1,α2,2α3—α4+α2],B=[α3,α2,α1],C=[α1+2α2,2α2+3α4,α4+3α1],若|B|=—5,|C|=40,则|A|=__________.
设n阶方阵A、B可交换,即AB=BA,且A有n个互不相同的特征值,证明:A与B有相同的特征向量.B相似于对角矩阵.
设A是n阶实对称矩阵,证明:A可逆的充要条件是存在n阶实矩阵B,使得AB+BTA是正定阵.
设两个线性方程组(I),(Ⅱ)为证明:方程组(I)有解的充分必要条件是方程组(Ⅱ)无解.
二次型f(x1,x2,x3)=xTAx=2x22+2x32+4x1x2-4x1x3+8x2x3的矩阵A=_______,规范形是______.
二次型f(x1,x2,x3)=x12+3x22+x32+2x1x2+2x1x3+2x2x3,则f的正惯性指数为____________.
随机试题
甲公司向乙公司签发了一张银行承兑汇票,付款人为丙银行,下列说法正确的有:()
下列不属于奇恒之腑的是
房产平面控制网的布设要求说法不准确的是()。
下列选项中,涉及年金计算的是()。[2015年11月三级真题]
根据《行政复议法实施条例》规定,股份制企业的()认为行政机关作出的具体行政行为侵犯企业合法权益的,可以以企业的名义申请行政复议。
下列对三国鼎立局面形成的评价,哪一项是符合历史发展趋势的?()
在德育、智育、美育、体育和劳动技术教育中,为其他方面的教育活动提供科学知识和智慧基础的是()。
“政府的主要作用是掌舵,而不是划桨。”这一说法是指()。
我国政府预算体系的最高层次是()。
经济基础与上层建筑相互作用构成的矛盾运动是极为复杂的,其表现有()
最新回复
(
0
)