首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2014年)设函数f(x),g(x)在区间[a,b]上连续,且f(x)单调增加,0≤g(x)≤1.证明: (Ⅰ)0≤∫axg(t)dt≤(x一a),x∈[a,b] (Ⅱ)∫aa+∫abg(t)dtf(x)dx≤∫abf(x)g(x)dx.
(2014年)设函数f(x),g(x)在区间[a,b]上连续,且f(x)单调增加,0≤g(x)≤1.证明: (Ⅰ)0≤∫axg(t)dt≤(x一a),x∈[a,b] (Ⅱ)∫aa+∫abg(t)dtf(x)dx≤∫abf(x)g(x)dx.
admin
2021-01-25
60
问题
(2014年)设函数f(x),g(x)在区间[a,b]上连续,且f(x)单调增加,0≤g(x)≤1.证明:
(Ⅰ)0≤∫
a
x
g(t)dt≤(x一a),x∈[a,b]
(Ⅱ)∫
a
a+∫
a
b
g(t)dt
f(x)dx≤∫
a
b
f(x)g(x)dx.
选项
答案
(Ⅰ)由0≤g(x)≤1得 0≤∫
0
x
g(t)dt≤∫
0
x
dt=(x一a) x∈[a,b] (Ⅱ)令F(u)=∫
a
u
f(x)g(x)dx—∫
a
a+∫
a
u
g(t)dt
f(x)dx 只要证明F(b)≥0,显然F(a)=0,只要证明F(u)单调增,又 F’(u)=f(u)g(u)一f(a+∫
a
u
g(t)dt)g(u) =g(u)[f(u)一f(a+∫
a
u
g(t)dt)] 由(Ⅰ)的结论0≤∫
a
x
g(t)dt≤(x-a)知,a≤a+∫
a
x
g(t)dt≤x,即 a≤a+∫
a
u
g(t)dt≤u 又f(x)单调增加,则f(u)≥f(a+∫
a
u
g(t)dt),因此,F’(u)≥0,F(b)≥0. 故 ∫
a
a+∫
a
b
g(t)dt
f(x)dx≤∫
a
b
f(x)g(x)dx.
解析
转载请注明原文地址:https://kaotiyun.com/show/TAx4777K
0
考研数学三
相关试题推荐
极限
曲线y=xe1/x2
[2010年]设f1(x)为标准正态分布的概率密度,f2(x)为[-1,3]上均匀分布的概率密度.若为概率密度,则a,b应满足().
[2015年]设矩阵且A3=O.求a的值;
[2006年]设α1,α2,…,αs都是n维列向量,A是m×n矩阵,则()成立.
求下列函数的导数:(1)y=(3x2+1)3;(2)y=e-x2+x+1;(3)y=sin(4x+5);(4)y=cosx2;
某保险公司对多年来的统计资料表明,在索赔户中被盗索赔户占20%,以X表示在随意抽查的100个索赔户中因被盗向保险公司索赔的户数.[附表]设Φ(x)是标准正态分布函数.利用棣莫弗一拉普拉斯中心极限定理,求被盗索赔户不少
(02年)设D1是由抛物线y=2χ2和直线χ=a,χ=2及y=0所围成的平面区域;D2是由抛物线y=2χ2和直线y=0,χ=a所围成的平面区域,其中0<a<2.(1)试求D1绕χ轴旋转而成的旋转体体积V1;D2绕y轴旋转而成的旋转体体积V2;
设y=y(x)由2xy=确定,则曲线y=y(x)在x=0对应的点处的切线为.
下列选项中正确的是()
随机试题
控制切屑流出方向的是铣刀的()。
把基础研究发现的新理论用于特定目标的研究属于()
A.天冬酰胺B.磷酸核糖C.甘氨酸D.谷氨酸上述物质中不是嘌呤核苷酸从头合成的直接原料是
子宫内膜的周期性变化超声特点是
A、 B、 C、 D、 A,B
我国现行建设项目投资构成和工程造价的构成中,()是指根据国家有关规定在投资中支付,并列入建设项目总造价或单价工程造价的费用。
某超市为增值税小规模纳税人。2006年1月,该超市取得货物零售收入120000元;向困难群体捐赠部分外购商品,捐赠商品的买价为4200元,售价为5000元;向职工发放部分外购商品作为节日福利,发放商品的买价为3000元,售价为3700元;销售已使用1年的冰
专业软件销售人员由于需要较高的专业知识且销售工作的周期较长,所以其薪酬应采用()。
以下不属于存储器的是()。
Mostpeopleagreethatfencing(击剑)isonesportinwhichapersonmustbeatleast30yearsoldbeforehelearnsallheneedst
最新回复
(
0
)