首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶非零矩阵,且存在自然数k,使得Ak=O.证明:A不可以对角化.
设A为n阶非零矩阵,且存在自然数k,使得Ak=O.证明:A不可以对角化.
admin
2019-08-23
62
问题
设A为n阶非零矩阵,且存在自然数k,使得A
k
=O.证明:A不可以对角化.
选项
答案
令AX=λX(X≠0),则有A
k
X=λ
k
X,因为A
k
=O,所以λ
k
X=0,注意到X≠0,故λ
k
=0,从而λ=0,即矩阵A只有特征值0(n重). 因为r(0E--A)=r(A)≥1,所以方程组(0E-A)X=0的基础解系至多含n—1个线性无关的解向量,故矩阵A不可对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/Cqc4777K
0
考研数学一
相关试题推荐
证明级数条件收敛。
设在上半平面D={(x,y)|y>0}内,函数f(x,y)具有连续偏导数,且对任意的t>0都有f(tx,ty)=t-2f(x,y)。证明:对L内的任意分段光滑的有向简单闭曲线L,都有
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=1,证明:存在ξ,η∈(a,b)使得eη-ξ[f[η)+f’(η)]=1。
设A为n阶可逆矩阵,α为n维列向量,b为常数,记分块矩阵其中A*是A的伴随矩阵,E为n阶单位矩阵。证明矩阵Q可逆的充分必要条件是αTA—1α≠b。
设A,B是n阶矩阵,则下列结论正确的是()
假设二维随机变量(X1,X2)的协方差矩阵为∑=,其中σij=Cov(Xi,Xj)(i,j=1,2),如果X1与X2的相关系数为ρ,那么行列式|∑|=0的充分必要条件是()
已知三阶矩阵A和三维向量x,使得x,Ax,A2x线性无关,且满足A3X=3Ax—2A2X。计算行列式|A+E|。
已知三阶矩阵A和三维向量x,使得x,Ax,A2x线性无关,且满足A3X=3Ax—2A2X。记P=(x,Ax,A2x)。求三阶矩阵B,使A=PBP—1。
设A为正交矩阵,则下列矩阵中不属于正交矩阵的是()
随机试题
设函数f(x)在区间[a,b]连续,且I(u)=∫auf(x)dx—∫auf(t)dt,a<u<b,则I(u)()
A、近端指间关节、掌指关节B、肘关节及腕关节C、肩关节及踝关节D、脊柱、中轴骨骼和四肢大关节E、膝关节、髋关节强直性脊柱炎常累及()
全口义齿初戴,义齿唇颊侧边缘应是
一般体力活动明显受限,步行1~2个街区,登楼一层引起心绞痛是一般体力活动轻度受限,快步、饭后、寒冷或刮风中、精神应激或醒后数小时内步行或登楼;步行1~2个街区,登楼一层引起心绞痛是
“阴平阳秘,精气乃治”所体现的阴阳关系是
患者,35岁,肺癌化疗后局部出现发红、肿胀、灼热,压痛明显。对此患者正确的处理措施是
当“霍夫曼系数”等于3时,工业化处于()。
已知某项目当基准收益率=15%时,NPV=165万元;当基准收益率=17%时,NPV=-21万元。则其内部收益率所在区间是( )。
1952年,我国国内生产总值(GDP)仅为300亿美元。1960年,达到614亿美元。之后,每年的GDP总量呈稳步小幅上升态势。1972年突破l000亿美元,之后用了10年的时间达到2021亿美元(1982年)。从此以后,我国GDP总量逐年稳步大幅增加
Thusfar,thereislittleevidencetosuggestthattechnologywillreduceinequality;indeeditmayonlyintensifyinequality.
最新回复
(
0
)