首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A是3阶矩阵,α1,α2是A的两个线性无关的特征向量,特征值都是2,α3也是A的特征向量,特征值是6.记 ①P=(α2,-α1,α3). ②P=(3α3,α2,α1). ③P=(α1,α1-α2,α3). ④P=(α1,
已知A是3阶矩阵,α1,α2是A的两个线性无关的特征向量,特征值都是2,α3也是A的特征向量,特征值是6.记 ①P=(α2,-α1,α3). ②P=(3α3,α2,α1). ③P=(α1,α1-α2,α3). ④P=(α1,
admin
2019-05-12
81
问题
已知A是3阶矩阵,α
1
,α
2
是A的两个线性无关的特征向量,特征值都是2,α
3
也是A的特征向量,特征值是6.记
①P=(α
2
,-α
1
,α
3
).
②P=(3α
3
,α
2
,α
1
).
③P=(α
1
,α
1
-α
2
,α
3
).
④P=(α
1
,α
2
+α
3
,α
3
).
则满足P
-1
AP=
的是
选项
A、①,④.
B、①,③.
C、②,③.
D、②,④.
答案
B
解析
P
-1
AP=
P的列向量组是A的一组线性无关的特征向量,特征值依次为2,2,6.
④的第2个列向量α
2
+α
3
,不是A的特征向量,④不合要求.②中3α
3
,α
2
,α
1
的特征值依次为6,2,2,②也不合要求.于是选项A,C,D都排除,选B.
转载请注明原文地址:https://kaotiyun.com/show/Cu04777K
0
考研数学一
相关试题推荐
设f(x)在[0,π]上连续,在(0,π)内可导,证明:至少存在一点ξ∈(0,π),使得f’(ξ)=一f(ο)cotξ.
,求A的全部特征值,并证明A可以对角化.
设为A的特征向量.A可否对角化?若可对角化,求可逆矩阵P,使得P-1AP为对角矩阵.
设D=.计算D;
设A是三阶实对称矩阵,其特征值为λ1=3,λ2=λ3=5,且λ1=3对应的线性无关的特征向量为α1=,则λ2=λ3=5对应的线性无关的特征向量为________.
设y=f(x)为区间[0,1]上的非负连续函数.设f(x)在(0,1)内可导,且f’(x)>一,证明(1)中的c是唯一的.
在电炉上安装了4个温控器,其显示温度的误差是随机的,在使用过程中,只要有两个温控器显示的温度不低于临界温度t0,电炉就断电,以E表示事件“电炉断电”,而T(1)≤T(2)≤T(3)≤T(4)为4个温控器显示的按递增顺序排列的温度值,则时间E等于()
设平面图形D由x2+y2≤2x与y≥x围成,求图形D绕直线x=2旋转一周所成的旋转体的体积.
计算曲线积分,其中L为不经过原点的逆时针光滑闭曲线.
(1996年)设f(x)有连续导数,f(0)=0,f’(0)≠0,且当x→0时,f’(x)与xk是同阶无穷小,则k等于()
随机试题
双因素理论中的双因素指的是()。
下列哪些是炎症性肠病的肠外表现
A.高血压脑病B.高血压危象C.恶性高血压D.原发性高血压E.继发性高血压发病机制尚不清,病理上以肾小动脉纤维素样坏死为特征
以下药物中,8岁以下儿童禁用的药物是
关于消费行为影响因素的说法,错误的是()。
公安机关的宗旨是对人民实行民主,对敌人实行专政。()
“公民的合法的私有财产不受侵犯”首次写入()。
已知直线x-y+3=0被圆(x-a)2+(y-2)2=4(a>0)截得的弦长为,则a的值为()。
在窗体上有一个命令按钮Command1,编写事件代码如下:PrivateSubCommand1_Click()DimyAsIntegery=0Doy=InPutBox{"y"}If(yMod10)+Int(y/10)=10The
A、 B、 C、 B图片A是馒头,图片B是米饭,图片C是菜。故本题答案为B。
最新回复
(
0
)