首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(I)设函数y=y(x)由方程sin(x2+y2)+ex-xy2=0所确定,求 (Ⅱ)设函数y=y(x)由方程x3+y3-sin3x+6y=0所确定,求dy|x=0; (Ⅲ)设函数y=f(x+y),其中f具有二阶导数,且f’≠1,求
(I)设函数y=y(x)由方程sin(x2+y2)+ex-xy2=0所确定,求 (Ⅱ)设函数y=y(x)由方程x3+y3-sin3x+6y=0所确定,求dy|x=0; (Ⅲ)设函数y=f(x+y),其中f具有二阶导数,且f’≠1,求
admin
2020-03-10
54
问题
(I)设函数y=y(x)由方程sin(x
2
+y
2
)+e
x
-xy
2
=0所确定,求
(Ⅱ)设函数y=y(x)由方程x
3
+y
3
-sin3x+6y=0所确定,求dy|
x=0
;
(Ⅲ)设函数y=f(x+y),其中f具有二阶导数,且f’≠1,求
选项
答案
(I)方法1 将原方程两边直接对x求导数,并注意y是x的函数,然后解出y’即可.由 (2x+2y·y’)cos(x
2
+y
2
)+e
x
-y
2
—2xy·y’=0, 得 [*] 方法2 将方程sin(x
2
+y
2
)+e
x
-xy
2
=0两边同时求全微分并写成f(x,y)dy=g(x,y)dx形式, 则[*]即为所求.由 cos(x
2
+y
2
)(2xdx+2ydy)+e
x
dx-y
2
dx-2xydy=0, 得 [*] (Ⅱ)方法1 先用隐函数求导法求出y’,再求微分dy=y’dx.在方程的两边对x求导,并注意到y是x的函数,得 3x
2
+3y
2
y’-3cos3x+6y’=0. 又y|
x=0
=0,上式中令x=0,y=0解得[*]从而[*] 方法2 利用一阶微分形式的不变性.由 d(x
3
+y
3
-sin3x+6y)=0, 即3x
2
dx+3y
2
dy-3cos3xdx+6dy=0, 又y|
x=0
=0,上式中令x=0,y=0解得[*] (Ⅲ)y=y(x)由方程f(x+y)-y=0确定,f为抽象函数,若把f(x+y)看成f(u),u=x+y,y=y(x),则变成复合函数和隐函数的求导问题.注意,f(x+y)及其导函数f’(x+y)均是x的复合函数. 将y=f(x+y)两边对x求导,并注意y是x的函数,f是关于x的复合函数,有 y’=f’·(1+y’), 即[*] 又由y’=(1+y’)f’再对x求导,并注意),y’是x的函数,f’仍然是关于x的复合函数,有 y"=(1+y’)’f’+(1+y’)(f’)’ =y’f’+(1+y’)f"·(1+y’) =y"f’+(1+y’)
2
f", 将[*]代入并解出y"即得[*] 或直接由[*]再对x求导,同样可求得[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/CuD4777K
0
考研数学三
相关试题推荐
设f(x)有连续导数,f(0)=0,f’(0)≠0,,且当x→0时,F’(x)与xk是同阶无穷小,则k等于()
设A是n阶矩阵,若存在正整数k,使线性方程组Akx=0有解向量α,且Ak-1α≠0。证明:向量组α,Aα,…,Ak-1α是线性无关。
设n阶矩阵A=。证明:行列式|A|=(n+1)an。
设区域D={(x,y)|x2+y2≤4,x≥0,y≥0},f(x)为D上的正值连续函数,a,b为常数,则dσ=()
设f(x)为连续函数,F(t)=∫tldy∫tyf(x)dx则F'(2)等于()
设线性方程组(1)Ax=0的一个基础解系为α1=(1,1,1,0,2)T,α2=(1,1,0,1,1)T,α3=(1,0,1,1,2)T。线性方程组(2)Bx=0的一个基础解系为β1=(1,1,一1,一1,1)T,β2=(1,一1,1,一1,2)T,β3
求下列积分。设函数f(x)在[0,1]上连续且∫01f(x)dx=A,求∫01dx∫1xf(x)f(y)dy。
设A,B为同阶方阵。若A,B相似,证明A,B的特征多项式相等;
设二维随机变量(X,Y)在区域G={(x,y)|l≤x+y≤2,0≤y≤1}上服从均匀分布。试求:Z=X+Y的概率密度fZ(z)。
随机试题
甲型肝炎传播途径不包括
治疗发热药物的作用机制A、布洛芬B、贝诺酯C、阿司匹林D、吲哚美辛E、对乙酰氨基酚具有解热镇痛抗炎作用,镇痛作用较强、对胃肠道刺激性小的是
房屋租赁登记备案记载的信息包括()。
计算I=,其中Ω为z2=x2+y2,z=1所围成的立体,则正确的解法是()。
施工生产全过程中的不安全因素是不同的、动态的,所以对施工安全生产必须实施( )。
会计电算化岗位及其权限设置一般在系统初始化时完成,平时根据人员的变动可进行相应调整。()
不存在卖空且两种证券完全正相关的情况下,这两种证券所形成的组合的预期收益率与标准差之间的关系为()。
张某因涉嫌投放危险物质,于2013年8月1日依法被公安机关逮捕并送交看守所羁押。在案件的侦查过程中,公安机关派工作人员王某和丁某对张某进行讯问,王某要求将张某羁押到公安机关进行讯问。王某和丁某二人认为案情比较重大,张某可能会被判处无期徒刑,于是以“车轮战”
定量研究参照自然科学研究的模式,其基本程序包括()
Inthestudyofmythology,thecharacterknownasthetricksterisagod,spirit,human,oranimalwhobreakstherulesoftheg
最新回复
(
0
)