首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为二阶矩阵,α1,α2为线性无关的二维列向量,Aα1=0,Aα2=2α1+α2,则A的非零特征值为__________。
设A为二阶矩阵,α1,α2为线性无关的二维列向量,Aα1=0,Aα2=2α1+α2,则A的非零特征值为__________。
admin
2019-01-19
68
问题
设A为二阶矩阵,α
1
,α
2
为线性无关的二维列向量,Aα
1
=0,Aα
2
=2α
1
+α
2
,则A的非零特征值为__________。
选项
答案
1
解析
根据题设条件,得
A(α
1
,α
2
)=(Aα
1
,Aα
2
)=(α
1
,α
2
)
。
记P=(α
1
,α
2
),因α
1
,α
2
线性无关,故P=(α
1
,α
2
)是可逆矩阵。由AP=P
,可得
P
-1
AP=
。记B=
,则A与B相似,从而有相同的特征值。
因为
|λE一B|=
=λ(λ一1),
所以A的非零特征值为l。
转载请注明原文地址:https://kaotiyun.com/show/M9P4777K
0
考研数学三
相关试题推荐
设n阶矩阵A,B可交换、即AB=BA,且A有n个互不相同的特征值.证明:(1)A的特征向量都是B的特征向量;(2)B相似于对角矩阵.
设某产品的总成本函数为C(χ)=400+3χ+χ2而需求函数p=,其中χ为产量(假定等于需求量),p为价格,试求:1)边际成本为_______;2)边际收益为_______;3)边际利润为_______;
当x→0时,f(x)=ln(1+x)一(ax2+bx)与g(x)=xtanx是等价的无穷小,则常数a,b的取值为
求不定积分
设A是m×n矩阵,B是n×l矩阵,证明:方程组ABX=0和BX=0是同解方程组的充要条件是r(AB)=r(B).
计算二重积分I=,其中积分区域为D={(x,y)||x|≤1,0≤y≤2}.
求二重积分I=(x+y)2dxdy,其中积分区域D={(x,y)|0≤ay≤x2+y2≤2ay,a>0}.
求二重积分I=xydxdy,其中积分区域D={(x,y)|x2+y2≥1,x2+y2—2x≤0,y≥0}.
计算二重积分I=,其中D为x2+y2=1与y=|x|所围成的区域.
给出如下5个命题:(1)若不恒为常数的函数f(x)在(一∞,+∞)内有定义,且x0≠0是f(x)的极大值点,则一x0必是一f(-x)的极大值点;(2)设函数f(x)在[a,+∞)上连续,f"(x)在(a,+∞)内存在且大于零,则F(x)=在(a,+∞)
随机试题
信息系统
下列因素中不能引起低钾血症的是
产后出血的处理原则为
请从所给的四个选项中选择最合适的一个填入问号处,使之呈现一定的规律。()
城市、县、镇人民政府应当根据城市总体规划、镇总体规划、土地利用总体规划和年度计划以及国民经济和社会发展规划,制定近期建设规划,以下不属于近期建设规划应当包括的重点内容的是( )。
根据《规划环境影响评价条例》,环境影响评价报告书书面审查意见应当包括()
根据教育部文件要求,到2015年,19个大城市所有县(市、区)实行划片就近入学,100%的小学划片就近入学;90%以上的初中实现划片入学。2014年1月14日,教育部印发《关于进一步做好小学升入初中免试就近入学工作的实施意见》。北京市要求取消共建生,小学免
设3阶矩阵A=,若伴随矩阵A*的秩R(A*)=1,则a=________.
A、 B、 C、 D、 C
A、Playingtheguitar.B、Workingatarestaurant.C、Singinginarockconcert.D、Dancinginaballetrecital.C
最新回复
(
0
)