首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知二次型f(x1,x2,x3)=xTAx在正交变换x=Oy下的标准形为y12+y22,且Q的第3列为 证明A+E为正定矩阵,其中E为3阶单位矩阵.
已知二次型f(x1,x2,x3)=xTAx在正交变换x=Oy下的标准形为y12+y22,且Q的第3列为 证明A+E为正定矩阵,其中E为3阶单位矩阵.
admin
2016-01-11
39
问题
已知二次型f(x
1
,x
2
,x
3
)=x
T
Ax在正交变换x=Oy下的标准形为y
1
2
+y
2
2
,且Q的第3列为
证明A+E为正定矩阵,其中E为3阶单位矩阵.
选项
答案
由(1)知A的特征值为1,1,0,于是A+E的特征值为2,2,1,又A+E为实对称矩阵,故A+E为正定矩阵.
解析
本题考查抽象二次型化标准形的逆问题,由正交变换下的标准形与二次型对应的矩阵A的特征值的关系,求A.再由正定矩阵的定义判定A+E的正定性.
转载请注明原文地址:https://kaotiyun.com/show/Cv34777K
0
考研数学二
相关试题推荐
设A是m×n阶矩阵,B是n×m阶矩阵,则().
设A是n阶矩阵,α1,α2,…,αn是n维列向量,且αn≠0,若Aα1=α2,Aα2=α3,……,Aαn-1=αn,Aαn=0.(1)证明:α1,α2,…,αn线性无关;(2)求A的特征值与特征向量.
设A=的一个特征值为λ1=2,其对应的特征向量为ξ1=(1)求常数a,b,c;(2)判断A是否可对角化,若可对角化,求可逆矩阵P,使得P-1AP为对角矩阵.若不可对角化,说明理由.
设矩阵A=为A*对应的特征向量.(1)求a,b及α对应的A*的特征值;(2)判断A可否对角化.
设A=相似于对角矩阵.求:(1)a及可逆矩阵P,使得P-1AP=A,其中A为对角矩阵;(2)A100.
设齐次线性方程组时XTAX的最大值.
设函数f(x)在[0,1]上连续,(0,1)内可导,且证明在(0,1)内存在一点,使fˊ(c)=0.
设f(x)是区间上的正值连续函数,且若把I,J,K按其积分值从小到大的次序排列起来,则正确的次序是
设函数f(x)是以T为周期的连续函数.(Ⅰ)证明:∫0x(t)dt可以表示成一个以T为周期的连续函数与kx之和,并求常数k;(Ⅱ)计算∫0xf(t)dt.
设X为随机变量,E(X)=μ,D(X)=σ2,则对任意常数C有().
随机试题
下列关于普通心肌细胞动作电位的描述,正确的是
煤焦油可致皮肤癌。研究发现,经煤焦油涂抹的皮肤如再接触佛波酯,肿瘤的发生率增加,潜伏期缩短。据此实验,佛波酯应属
依照有关法律、行政法规规定的职责和权限,()可以对有关单位的会计资料实施监督检查。
英译汉:“compression strength”,正确的翻译为( )。
证券的清算和交收统称为证券结算,包括证券结算和资金结算。()
关于债券的票面价值描述正确的有( )。
社会工作者在组员发言之后,站在同理心的角度,向发言者表达对其发言的高度重视,认真了解和把握发言者的用意与感受,并伴以积极的回应。这种沟通与互动技巧属于()。
人类特有的最高级的心理现象是()
FamilyMattersThismonth,Wyomingpassedabillthatwouldgivelegalteethtothemoralobligationtosupportone’sparent
WhichAttributesofaFoodProductareMostImportanttoConsumersA)TheAustralianstateofVictoriaisinvestinginapro
最新回复
(
0
)