首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶矩阵A的伴随矩阵A*≠O,且非齐次线性方程组AX=b有两个不同解η1,η2,则下列命题正确的是( ).
设n阶矩阵A的伴随矩阵A*≠O,且非齐次线性方程组AX=b有两个不同解η1,η2,则下列命题正确的是( ).
admin
2022-04-02
88
问题
设n阶矩阵A的伴随矩阵A
*
≠O,且非齐次线性方程组AX=b有两个不同解η
1
,η
2
,则下列命题正确的是( ).
选项
A、AX=b的通解为是k
1
η
1
+k
2
η
2
B、η
1
+η
2
为AX=b的解
C、方程组AX=0的通解为k(η
1
-η
2
)
D、AX-b的通解为k
1
η
1
+k
2
η
2
+1/2(η
1
+η
2
)
答案
C
解析
因为非齐次线性方程组AX=b的解不唯一,所以,r(A)<n,又因为A
*
≠O,所以r(A)=n-1,η
2
-η
1
为齐次线性方程组AX=0的基础解系,选(C).
转载请注明原文地址:https://kaotiyun.com/show/U1R4777K
0
考研数学三
相关试题推荐
已知线性方程组有无穷多解,求a,b的值并求其通解。
在区间[0,π]上随机取两个数X与Y,则概率P{cos(X+Y)<0)=__________.
设其中ai≠aj(i≠j,i,j=1,2,…,n),则线性方程组ATx=B的解是________.
没向量组(I):a1,a2,…,an(Ⅱ):a1,a2,…,an-1则必有().
设f(x)是[0,1]上单调减少的正值连续函数,证明∫01xf2(x)dx.∫01f3(x)dx≥∫01f3(x)dx.∫01f2(x)dx,即要证I=∫01f2(x)dx.∫01f3(x)dx一∫01xf3(x)dx.∫01f2(x
设为两个正项级数.证明:
设三阶实对称矩阵A的各行元素之和均为3,向量α1=(一1,2,一1)T,α2=(0,一1,1)T是线性方程组Ax=0的两个解。(Ⅰ)求A的特征值与特征向量;(Ⅱ)求正交矩阵Q和对角矩阵Λ,使得QTAQ=Λ。
将n个观测数据相加时,首先对小数部分按“四舍五入”舍去小数位后化为整数。试利用中心极限定理估计:试当n=1500时求舍位误差之和的绝对值大于15的概率;
已知下列非齐次线性方程组:求解方程组(I),用其导出组的基础解系表示其通解;
设a0,a1,an-1是n个实数,方阵(1)若λ是A的特征值,证明:ξ=[1,λ,λ2,…,λn-1]T是A的对应于特征值λ的特征向量;(2)若A有n个互异的特征值λ1,λ2,…,λn,求可逆阵P,使Pλ1AP=A.
随机试题
传统的()认为,领导者具有某些固有的特质,并且这些特质是与生俱来的,只有先天具备了这些特质的人才能成为领导。
下列组成药物中含有生黄芪与当归的方剂是
A.门静脉炎B.细菌性肝脓肿C.两者均可D.两者均不可急性阑尾炎时可并发
水煮沸时能去除的硬度指
我国首次国债发行始于1949年年底,当时称为“人民胜利折实公债”,至1958年,总共发行了()次。
评审内部控制制度健全性的重点是______。
“夜来风雨声,花落知多少”说的是思维的概括性。()
【B1】【B17】
A、Hemissedhisaunt.B、Helosthismother.C、Hehadtoattendschoolthere.D、HewasunhappyinCalifornia.B节目嘉宾说Dean到加州四年后母亲去
Thefinancialclimateforcharitiesisworsening,withmorethanhalfhitbytheeconomicdownturn,asurveyrevealstoday.Over
最新回复
(
0
)