设f(x),g(x)在[a,b]上连续,且满足 ∫axf(t)dt≥∫axg(t)dt,x∈[a,b),∫abf(t)dt=∫abg(t)dt, 证明:∫abxf(x)dx≤∫abxg(x)dx.

admin2017-04-11  13

问题 设f(x),g(x)在[a,b]上连续,且满足
    ∫axf(t)dt≥∫axg(t)dt,x∈[a,b),∫abf(t)dt=∫abg(t)dt,
证明:∫abxf(x)dx≤∫abxg(x)dx.

选项

答案当x∈[a,b)时, ∫axf(t)dt≥∫axg(t)dt←→∫ax[f(t)一g(t)]dt≥0, ∫axf(t)dt=∫axg(t)dt←→∫ax[f(t)一g(t)]dt=0, ∫axxf(x)dx≤∫axxg(x)dx←→x[f(x)一g(x)]dx≤0, 令G(x)=∫ax[f(t)一g(t)]dt,则G’(x)=f(x)一g(x),于是 ∫abx[f(x)一g(x)]dx=∫abxd(∫ax[f(t)一g(t)]dt) [*]x∫ax[f(t)一g(t)]dt|ab一∫ab{∫ax[f(t)一g(t)dt}dx =一∫ab{∫ax[f(t)一g(t)dt}dx≤0(G(x)=∫ax[f(t)一g(t)]dt≥0), 即∫abx[f(x)一g(x)]dx≤0,即∫abxf(x)dx≤∫abxg(x)dx.

解析
转载请注明原文地址:https://kaotiyun.com/show/D3t4777K
0

最新回复(0)