首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)=,则下列关于f(x)的单调性的结论正确的是 ( )
设f(x)=,则下列关于f(x)的单调性的结论正确的是 ( )
admin
2018-12-21
47
问题
设f(x)=
,则下列关于f(x)的单调性的结论正确的是 ( )
选项
A、在区间(一∞,0)内是严格单调增加,在(0,﹢∞)内是严格单调减少.
B、在区间(一∞,0)内是严格单调减少,在(0,﹢∞)内是严格单调增加.
C、在区间(一∞,0)与(0,﹢∞)内都是严格单调增加.
D、在区间(一∞,0)与(0,﹢∞)内都是严格单调减少.
答案
C
解析
取其分子,令φ(x)=xe
x
-e
x
﹢2,
有φ(0)=1﹥0,φ
’
(x)=xe
x
,当x﹤0时,φ
’
(x)﹤0;当x﹥0时,φ
’
(x)﹥0.
所以当x﹤0时,φ(x)﹥0;当x﹥0时,也有φ(x)﹥0.故知在区间(-∞,0)与(0,﹢∞)内均有f
’
(x)﹥0.
从而知f(x)在区间(-∞,0)与(0,﹢∞)内均为严格单调增加.
转载请注明原文地址:https://kaotiyun.com/show/DAj4777K
0
考研数学二
相关试题推荐
(2009年)设函数f(χ,y)连续,则∫12dχ∫χ2f(χ,y)dy+∫12dy∫y4-yf(χ,y)dχ=【】
(2005年)已知3阶矩阵A的第一行是(a,b,c),a,b,c不全为零,矩阵B=(k为常数),且AB=O,求线性方程组Aχ=0的通解.
(1999年)计算
(2004年)设函数f(χ)在(-∞,+∞)上有定义,在区间[0,2]上,f(χ)=χ(χ2-4),若对任意的χ都满足f(χ)=kf(χ+2),其中k为常数.(Ⅰ)写出f(χ)在[-2,0]上的表达式;(Ⅱ)问k为何值时,f(χ)在χ=
(1990年)已知=0,其中a,b是常数,则【】
(1990年)在椭圆=1的第一象限部分上求一点P,使该点处的切线、椭圆及两坐标轴所围图形面积为最小(其中a>0,b>0).
(2012年)已知函数f(χ)=,记a=f(χ).(Ⅰ)求a的值;(Ⅱ)若当χ→0时,f(χ)-a与χk是同阶无穷小,求常数k的值.
求函数f(x,y)=x2+2y2一x2y2在区域D={(x,y)|x2+y2≤4,y≥0)上的最大值与最小值.
设f(x)在闭区间[一1,1]上具有三阶连续导数,且f(一1)=0,f(1)=1,f’(0)=0,证明:在[一1,1]内存在ξ,使得f"(ξ)=3.
从船上向海中沉放某种探测仪器,按探测要求,需确定仪器的下沉深度y(从海平面算起)与下沉速度v之间的关系.设仪器在重力作用下,从海平面由静止开始铅直下沉,在下沉过程中还要受到阻力和浮力的作用.设仪器的质量为m,体积为V,海水的比重为ρ,仪器所受阻力与下沉速度
随机试题
火焰矫正时,其温度范围一般在700~1000℃之间,如果温度过高,会引起钢材过热或过烧,当温度低于700℃时,容易产生热脆性。
坡口边缘未焊透在X射线底片上的特征是什么?
输血过程中下列何项不妥()。
A、 B、 C、 D、 C
治疗重度妊娠高血压综合征首选的药物是( )
下列机电工程测量仪器中,()的主要功能是用来测量标高和高程。
下列不属于世界贸易组织主要原则的是()。
下列各项中,不会影响流动比率的业务是()。
材料:庄严的科学殿堂其实是一座仅靠着几根“虚空支柱”撑持起来的“空中楼阁”。它很像北岳恒山的那座悬空寺——离地五十余米,唯见十几根碗口粗的木柱支撑,“上延霄客,下绝嚣浮”,嵌于万仞峭壁之中。全部科学体系仅仅依靠几条基本假设撑起。这些人为
A、 B、 C、 D、 A元素叠加。第一组图中叠加规律:白+黑=白,白+白=黑,黑+白=白。第二组图应也符合此规律。故本题选A。
最新回复
(
0
)