首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知3阶矩阵B为非零向量,且B的每一个列向量都是方程组 (Ⅰ)求λ的值; (Ⅱ)证明|B|=0.
已知3阶矩阵B为非零向量,且B的每一个列向量都是方程组 (Ⅰ)求λ的值; (Ⅱ)证明|B|=0.
admin
2020-04-21
44
问题
已知3阶矩阵B为非零向量,且B的每一个列向量都是方程组
(Ⅰ)求λ的值;
(Ⅱ)证明|B|=0.
选项
答案
(Ⅰ)因|B|≠0,故B中至少有一个非零列向量,依题意,所给齐次方程组非零解,故必有系数行列式|A|=[*]=0,由此可得λ=1. (Ⅱ)因B的每一列向量都是原方程的解,故AB=0. 因A≠0则必有|B|=0.事实上,倘若不然,设|B|≠0,则B可逆,故由AB=0两边右乘B
-1
,得A=0,这与已知条件矛盾,可见必有|B|=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/DB84777K
0
考研数学二
相关试题推荐
设n阶矩阵A=(α1,α2,…,αn)的前n-1个列向量线性相关,后n-1个列向量线性无关,且α1+2α2+…+(n-1)αn-1=0,b=α1+α2,…+αn.求方程组AX=b的通解.
设n阶矩阵A=(α1,α2,…,αn)的前n-1个列向量线性相关,后n-1个列向量线性无关,且α1+2α2+…+(n-1)αn-1=0,b=α1+α2,…+αn.证明方程组AX=b有无穷多个解;
计算不定积分
设连续函数f(x)满足:∫01[f(x)+xf(xt)]dt与x无关,求f(x).
设3阶方阵A的特征值为2,-1,0,对应的特征向量分别为α1,α2,α3,若B=A3-2A2+4E,试求B-1的特征值与特征向量.
设A是任一n(n≥3)阶方阵,A*是其伴随随矩阵,又k为常数,且k≠0,±1,则必有(kA)*=().
[2003年]已知平面上三条不同直线的方程分别为l1:ax+2by+3c=0,l2:bx+2cy+3a=0,l3:cx+2ay+3b=0.试证这三条直线交于一点的充分必要条件为a+b+c=0.
[2015年]设D是第一象限中曲线2xy=1,4xy=1与直线y=x,y=√3x围成的平面区域:函数f(x,y)在D上连续,则f(x,y)dxdy=().
[2012年]设区域D由曲线y=sinx,x=±π/2,y=1围成,则(xy5一1)dxdy=().
求二重积分,其中D是由曲线r=2(1+cosθ)的上半部分与极轴所围成的区域。
随机试题
胆胃不和,痰热内扰,症见虚烦不眠,惊悸不宁者,治宜选用()(1995年第52题)
MsgBox函数使用的正确语法是()。
A、HCO3-↓,pH↑,PaCO2↓B、HCO3-正常,pH↓,PaCO2↓C、HCO3-正常或↑,pH↓,PaCO2↓D、HC3-↑,pH↑,PaCO2正常或↑E、HCO3-↓,pH↓,PaCO2正常或↓代谢性碱中毒
在法人治理结构中,()是监督机构,向股东会负责,对董事会和经营管理层的决策和经营管理活动进行监督。
甲公司系增值税一般纳税人,销售商品适用增值税税率为17%,发生的有关债务重组经济业务如下:(1)2×17年1月1日与丙银行协商并达成协议,将丙银行于2×16年1月1日贷给甲公司的3年期,年利率为9%,本金为500万元的贷款进行债务重组,丙银行未对该项贷款
皮亚杰认为,儿童在判断行为对错时,是()。
Whichflightwillthemantake?
WhydoesMrs.Smithfeelsad?
HowtoReducePresentationStress1.Causesofpresentationstress■Fearofbeing【T1】______【T1】______■D
【R1】______Ifthesettingisscenic,itsclaimstofameareslender:athrivingumbrellaindustryandareputationasthecoldest
最新回复
(
0
)