首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设,当a,b为何值时,存在矩阵*C,使得AC—CA=B,并求所有矩阵C.
设,当a,b为何值时,存在矩阵*C,使得AC—CA=B,并求所有矩阵C.
admin
2018-11-11
43
问题
设
,当a,b为何值时,存在矩阵
*
C,使得AC—CA=B,并求所有矩阵C.
选项
答案
[*] 所以,当a=一1,b=0时,系数矩阵与增广矩阵的秩相等,也就是线性方程组有解,即存在C,使AC—CA=B.又当a=一1,b=0时, [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/DCj4777K
0
考研数学二
相关试题推荐
设A=(α1,α2,α3)是5×3矩阵β1,β2是齐次线性方程组ATx=0的基础解系,试证α1,α2,α3,β1,β2线性无关.
设B是秩为2的5×4矩阵,α1=(1,1,2,3)T,α2=(一1,1,4,一1)T,α3=(5,一1,一8,9)T是齐次线性方程组Bx=0的解向量,求Bx=0的解空间的一个标准正交基.
已知非齐次线性方程组554有3个线性无关的解,求a,b的值及方程组的通解.
设有向量组问α,β为何值时:向量b能由向量组A线性表示,且表示式唯一;
设二次型f(x1,X2,X3)=a()+2x1x2+2x2x3+2x1x3的正、负惯性指数分别为1,2,则___________.
计算下列反常积分(广义积分)的值.
极限()
二阶常系数非齐次线性方程y’’一4y’+3y=2e2x的通解为y=______________.
(2010年)(Ⅰ)比较∫01|lnt|[ln(1+t)]ndt与∫01tn|lnt|dt(n=1,2,…)的大小,说明理由;(Ⅱ)记un=∫01|lnt|[ln(1+t)]ndt(n=1,2,…),求极限un.
(2002年)设0<χ1<3,χn+1=(n=1,2,…),证明数列{χn}的极限存在,并求此极限.
随机试题
下面关于哈希表的说法中,正确的是_______。
有关毒性反应的叙述正确的是( )。
在下列四个选项中,说法不正确的有()。
各种建筑构件空气声隔声性能的单值评价量是:
将叶轮与电动机的转子直联成一体,浸没在被输送液体中,属离心式泵的一种,又称为无填料泵,该泵为()。
自然人发现信息处理者违反法律、行政法规的规定或者双方的约定处理其个人信息的,有权请求信息处理者及时()。
人体在晚上分泌的镇痛荷尔蒙比白天多,因此,在晚上进行手术的外科病人需要较少的麻醉剂。既然较大量的麻醉剂对病人的风险更大,那么,如果经常在晚上做手术,手术的风险也就可以降低了。下列哪项如果为真,最能反驳上述结论?
WorkingMothersCarefullyconductedresearchesthathavefollowedthechildrenofworkingmothershavenotbeenabletoshow
Thescientificandmedicalprizeshaveprovedtobetheleast______,whilethoseforliteratureandpeacebytheirverynature
TheBusinessmanoftheCenturyLedbypeoplewhocouldtakeanideaandturnitintoanindustry,ourworldreachedunheard-
最新回复
(
0
)