首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在[0,+∞)上可导,f(0)=1,且满足等式f’(x)+f(x)一∫0xf(t)dt=0。 证明当x≥0时,成立不等式e—x≤f(x)≤1。
设函数f(x)在[0,+∞)上可导,f(0)=1,且满足等式f’(x)+f(x)一∫0xf(t)dt=0。 证明当x≥0时,成立不等式e—x≤f(x)≤1。
admin
2019-07-22
68
问题
设函数f(x)在[0,+∞)上可导,f(0)=1,且满足等式f’(x)+f(x)一
∫
0
x
f(t)dt=0。
证明当x≥0时,成立不等式e
—x
≤f(x)≤1。
选项
答案
由上题中结果知,当x≥0时,f’(x)<0,即f(x)单调减少,又f(0)=1,所以f(x)≤f(0)=1。 设φ(x)=f(x)一e
—x
,则 φ(0)=0,φ’(x)=f’(x)+e
—x
=[*], 当x≥0时,φ’(x)≥0,即φ(x)单调增加。因而φ(x)≥φ(0)=0,即有f(x)≥e
—x
。 综上所述,当x≥0时,不等式e
—x
≤f(x)≤1成立。
解析
转载请注明原文地址:https://kaotiyun.com/show/DQN4777K
0
考研数学二
相关试题推荐
求下列极限:
设f(χ)在[a,b]上连续,且f(χ)>0,证明:存在ξ∈(a,b),使得∫aξf(χ)dχ=∫ξbf(χ)dχ.
设对一切的χ,有f(χ+1)=2f(χ),且当χ∈[0,1]时f(χ)=χ(χ2-1),讨论函数f(χ)在χ=0处的可导性.
设f(χ),g(χ)(a<χ<b)为大于零的可导函数,且f′(χ)g(χ)-f(χ)g′(χ)<0,则当a<χ<b时,有().
设n维行向量α=(,0,…,0,),A=E-αTα,B=E+2αTα,则AB为().
(Ⅰ)设ex+y=y确定y=y(x),求y’,y’’;(Ⅱ)设函数y=f(x+y),其中f具有二阶导数,且f’≠1,求
若函数f(x)在x=1处的导数存在,则极限=_______.
随机试题
Thesizeofaudience,________wehadexpected,waswellovertwothousand.
1.4,2.8,8.4,33.6,168,()
控制的过程是什么?各过程中是如何决策的?
泽泻具有的功效是
【背景资料】某港进行航道疏浚工程,疏浚工程量为65万m3,施工地点至抛泥区的平均运距25km,采用1艘4500m3自航耙吸挖泥船24小时全天候挖运抛施工,工况为二级。挖泥船重载航速8节,轻载航速12节,挖泥航速3节(1节=1.852km/h),挖
某地上3层的歌舞娱乐建筑,每层建筑面积380m2,建筑内按国家工程消防建设标准设置了消防设施。对其室内装修进行防火检查,下列检查结果符合现行国家消防技术标准规定的是()。
下列不属于我国商品检验种类的是( )。
在教学中如何提高学生的问题解决能力?
通知不能主送同级机关。()
WhatfactorcanbeattributedtoGermanprosperity?WhichofthefollowingisNOTtrueoftraditionaluniversityresearch?
最新回复
(
0
)