首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b)=0,f’+(a)f’-(b)>0,且g(x)≠0(x∈[a,6]),g’(x)≠0(a<x<b),证明:存在ξ∈(a,b),使得
设f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b)=0,f’+(a)f’-(b)>0,且g(x)≠0(x∈[a,6]),g’(x)≠0(a<x<b),证明:存在ξ∈(a,b),使得
admin
2018-05-22
64
问题
设f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b)=0,f’
+
(a)f’
-
(b)>0,且g(x)≠0(x∈[a,6]),g’(x)≠0(a<x<b),证明:存在ξ∈(a,b),使得
选项
答案
设f’
+
(a)>0,f’
-
(b)>0, 由f’
+
(a)>0,存在x
1
∈(a,b),使得f(x
1
)>f(a)=0; 由f’
-
(b)>0,存在x
2
∈(a,b),使得f(
2
)<f(b)=0, 因为f(x
1
)f(x
2
)<0,所以由零点定理,存在c∈(a,b),使得f(c)=0. 令h(x)=[*],显然h(x)在[a,b]上连续,由h(a)=h(c)=h(b)=0, 存在ξ
1
∈(a,c),ξ
2
∈(c,b),使得h(ξ
1
)=h’(ξ
2
)=0, 而 [*] 令φ(x)=f’(x)g(x)-f(c)g’(x),φ(ξ
1
)=φ(ξ
2
)=0, 由罗尔定理,存在ξ∈(ξ
1
,ξ
2
)[*](a,b),使得φ’(ξ)=0, 而φ’(x)=f’’(x)g(x)-f(c)g’’(x),所以[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/DSk4777K
0
考研数学二
相关试题推荐
(2008年试题,一)在下列微分方程中,以y=C1ex+C2cos2x+C3sin2x(C1,C2,C3为任意常数)为通解的是().
(2007年试题,一)如图1—3—6所示,连续函数y=f(x)在区间[一3,一2],[2,3]上的图形分别是直径为1的上、下半圆周,在区间[一2,0],[0,2]上的图形分别是直径为2的上、下半圆周.设则下列结论正确的是().
(2003年试题,一)设函数y=f(x)由方程xy+21nx=y4所确定,则曲线y=f(x)在点(1,1)处的切线方程是__________.
设α,β为3维列向量,βT为β的转置.若矩阵αβT相似于,则βTα=________.
设m,n是正整数,则反常积分的收敛性
设向量组α1=(1,0,1)T,α2=(0,1,1)T,α3=(1,3,5)T不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,a)T线性表示.(1)求a的值.(2)将β1,β2,β3用α1,α2,α3线性表示
已知曲线(a>0)与曲线在点(x0,y0)处有公共切线,求:(1)常数a及切点(x0,y0);(2)两曲线与x轴所围成平面图形绕x轴旋转一周所得旋转体体积Vx.
已知函数y=y(x)在任意点x处的增量[*]且当△x→0时,a是△x的高阶无穷小,y(0)=π,则y(1)等于
讨论,在点(0,0)处的连续性、可偏导性及可微性.
计算I=xydxdy,其中D由y=-x,y=及y=围成.
随机试题
该病证的证候是()(2010年第70题)
女性,44岁。2周前出现右上腹痛,伴发热。查体:巩膜轻度黄染,结膜略苍白,右肺呼吸音弱,右上腹压痛,无反跳痛及肌紧张。腹部超声:肝脏右叶见一类圆形病灶,大小约5cm×5cm,其回声不均。下列诊断可能性最小的是
下颌角前上方一横指凹陷中,咀嚼时咬肌隆起最高点处是
据《关于学习贯彻(规划环境影响评价条例)加强规划环境影响评价工作的通知》,认真做好交通及重要基础设施规划环评,把()作为着力点。
报警阀在进行渗漏试验时,试验压力应为额定工作压力的()倍。
经典条件反射理论的提出者是__________。
UKhouseholdsarecuttingbackonspendingatthefastestratesince1980.Thisis【C1】______totheworsteconomicslowdowninth
下列哪些属于教师职业道德修养的基本方法()
AcademicTitlesatUSCollegesI.Tenureprofessors-A【T1】______isusuallyneeded【T1】______-Theappointmentis【T2】_
Innocircumstancesshouldpoliceuse(violent)________againstdemonstrators.
最新回复
(
0
)