首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1)证明拉格朗日拉值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f’(ξ)(b-a). (2)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且,则f’+(0)存在,且f’+
(1)证明拉格朗日拉值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f’(ξ)(b-a). (2)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且,则f’+(0)存在,且f’+
admin
2014-01-26
77
问题
(1)证明拉格朗日拉值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f’(ξ)(b-a).
(2)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且
,则f’
+
(0)存在,且f’
+
(0)=A.
选项
答案
(1)作辅助函数ψ(x)=f(x)-f(a)-[*]。 易验证ψ(x)在[a,b]上满足罗尔定理的条件. 可得在(a,b)内至少有一点ξ,使得ψ’(ξ)=0, 即[*] 所以 f(b)-f(a)=f’(ξ)(b-a). (2)任取x
0
∈(0,δ),则函数f(x)满足:在闭区间[0,x
0
]上连续,开区间(0,x
0
)内可导, 由拉格朗日中值定理可得: 存在ξ(x
0
)∈(0,x
0
)[*](0,δ),使得 [*] 即[*] 又由于[*],对①式两边取x
0
→0
+
时的极限有 [*] 故f’
+
(0)存在,且f’
+
(0)=A.
解析
已经连续两年考查教材上的重要结论,这一点值得关注.另外,注意利用前一问提供的信息,此题应想到证明(2)要用拉格朗日中值定理.
转载请注明原文地址:https://kaotiyun.com/show/Eh34777K
0
考研数学二
相关试题推荐
(2007年)设二元函数计算二重积分,其中D={(x,y)||x|+|y|≤2).
证明n阶矩阵相似.
已知向量组(Ⅰ):α1,α2,α3;(Ⅱ)α1,α2,α3,α4;(Ⅲ):α1,α2,α3,α5.如果各向量组的秩分别为R(Ⅰ)=R(Ⅱ)=3,R(Ⅲ)=4.证明:向量组(Ⅳ):α1,α2,α3,α5-α4的秩为4.
(07年)设函数f(χ,y)连续,则二次积分f(χ,y)dy等于【】
(04年)函数f(χ)=在下列哪个区间内有界:【】
(11年)已知函数f(u,v)具有二阶连续偏导数,f(1,1)=2是f(u,v)的极值,z=f(χ+y,f(χ,y)).求.
(2015年)为了实现利润的最大化,厂商需要对某商品确定其定价模型,设Q为该商品的需求量,P为价格,MC为边际成本,η为需求弹性(η>0)。(I)证明定价模型为(Ⅱ)若该商品的成本函数为C(Q)=1600+Q2,需求函数为Q=40一P,试由(I)中的定
[2008年]设n元线性方程组AX=b,其中当a为何值时,该方程组有无穷多解,并求通解.
(2004年)设f(x),g(x)在[a,b]上连续,且满足∫axf(t)dt≥∫axg(t)dt,x∈[a,b),∫abf(t)dt=∫abg(t)dt。证明:∫abxf(x)dx≤∫abxg(x)dx。
随机试题
先进的社会意识对社会存在之所以能起促进作用,在于()
某学校的保健老师在家长课堂讲课时,旁听的口腔专家指出下面一项说法容易引起误导
下列关于五脏所藏的叙述,错误的是
药物与血浆蛋白结合后
根据《文物保护法》,因建设工期紧迫或者有自然破坏危险,对古文化遗址、古墓葬急需进行抢救发掘的,应由()组织发掘。
下列选项与工业革命相关的是()。①垄断组织的出现②人类进入信息时代③蒸汽机运用于交通运输④电力进入生产领域
依据《中华人民共和国教师法》,下列情形中,学校不能给予老师行政处分或者解聘的是()。
某研究者假设:海马与复杂思维加工有关,与简单思维加工无关。该研究者随机选出20只白鼠平均分成两组,切除它们的海马,让第一组学习简单迷宫,第二组学习复杂迷宫。第一组经过10次学习就出现完全正确的情况,第二组在学习30次后才出现完全正确的情况。研究者据此认为最
π/9
以下程序运行后的输出结果是【】。main(){inti,n[]={0,0,0,0,0};for(i=1;i<=4;i++){n[i]=n[i-1]*2+1;printf("%d",n[i]);}
最新回复
(
0
)