首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=(aij)3×3是实正交矩阵,且a11=1,b=(1,0,0)T,则线性方程组Ax=b的解是____________________.
设A=(aij)3×3是实正交矩阵,且a11=1,b=(1,0,0)T,则线性方程组Ax=b的解是____________________.
admin
2021-02-25
63
问题
设A=(a
ij
)
3×3
是实正交矩阵,且a
11
=1,b=(1,0,0)
T
,则线性方程组Ax=b的解是____________________.
选项
答案
(1,0,0)
T
解析
本题主要考查正交矩阵的性质和克拉默法则及矩阵的运算.
设
由题设知AA
T
=E,即
于是有1+a
2
12
+a
2
13
=1,所以a
12
=a
13
=0,从而
所以x=(1,0,0)
T
为Ax=b的解.
转载请注明原文地址:https://kaotiyun.com/show/DY84777K
0
考研数学二
相关试题推荐
改变积分次序
设=A,求.
设A是三阶矩阵,其特征值是1,2,3,若A与B相似,求|B*+E|.
设实对称矩阵A=,求可逆矩阵P,使P一1AP为对角矩阵,并计算行列式|A一E|的值.
设f(x)∈C[a,b],在(a,b)内二阶可导,且f’’(x)≥0,φ(x)是区间[a,b]上的非负连续函数,且∫ab(x)dx=1.证明:∫abf(x)φ(c)dx≥f[∫abxφ(x)dx].
设向量α1,α2,…,αn-1是n—1个线性无关的n维列向量,ξ1,ξ2是与α1,α2,…,αn-1均正交的n维非零列向量。证明:α1,α2,…,αn-1ξ线性无关。
a,b取何值时,方程组有解?
设X1,X2分别为A的属于不同特征值λ1,λ2的特征向量.证明:X1+X2不是A的特征向量.
设三阶实对称矩阵A的特征值为λ1=1,λ2=一1,λ3=0;对应λ1,λ2的特征向量依次为P1=(1,2,2)T,P2=(2,1,一2)T,求A。
已知向量组(Ⅰ)能由向量组(Ⅱ)线性表出,且秩(Ⅰ)=秩(Ⅱ),证明向量组(Ⅰ)与向量组(Ⅱ)等价.
随机试题
在报告的写作中,信息的主要来源是
WelcometoFranklinHotel.Tomakeyourstayasenjoyableaspossible,wehopeyouwilluseourfacilities(设施)tothefull.
A.慢性中性粒细胞性白血病B.急性早幼粒细胞性白血病C.急性淋巴细胞性白血病D.慢性粒单核细胞性白血病E.急性单核细胞性白血病化疗过程中易发生或加重DIC的是
男性,45岁,上颌后牙食物嵌塞,要求行冠修复。查:右上6MOD大面积银汞合金充填,死髓牙,牙稳固,叩(一),近中与右上5接触较差.若采用预制桩核.与铸造桩核比较.其最大优点是
C公司是一家冰箱生产企业,全年需要压缩机360000台,均衡耗用。全年生产时间为360天,每次的订货费用为160元,每台压缩机持有费率为80元,每台压缩机的进价为900元。根据经验,压缩机从发出订单到进入可使用状态一般需要5天,保险储备量为2000台。
在一个企业集团内部,财务部可以确定的定位包括()。
小张、小王二人同时从甲地出发,驾车匀速在甲乙两地之间往返行驶。小张的车速比小王快,两人出发后第一次和第二次相遇都在同一地点,那么小张的车速是小王的__________倍。
用于网络软件测试和本地进程间通信的Ping应用程序使用回送地址()。
关系代数是关系操纵语言的一种传统表示方式,它以集合代数为基础,它的运算对象和运算结果均为______。
Bigcitestodayareconfrontedwithveryseriousproblems.Transportisa【C1】______difficulty:someplannersbelievein【C2】_____
最新回复
(
0
)