首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=(aij)3×3是实正交矩阵,且a11=1,b=(1,0,0)T,则线性方程组Ax=b的解是____________________.
设A=(aij)3×3是实正交矩阵,且a11=1,b=(1,0,0)T,则线性方程组Ax=b的解是____________________.
admin
2021-02-25
43
问题
设A=(a
ij
)
3×3
是实正交矩阵,且a
11
=1,b=(1,0,0)
T
,则线性方程组Ax=b的解是____________________.
选项
答案
(1,0,0)
T
解析
本题主要考查正交矩阵的性质和克拉默法则及矩阵的运算.
设
由题设知AA
T
=E,即
于是有1+a
2
12
+a
2
13
=1,所以a
12
=a
13
=0,从而
所以x=(1,0,0)
T
为Ax=b的解.
转载请注明原文地址:https://kaotiyun.com/show/DY84777K
0
考研数学二
相关试题推荐
求星形线的质心,其中a>0为常数.
[*]
设f(x)连续,且f(x)=2∫0xf(x-t)dt+ex,求f(x).
已知f(x)是周期为5的连续函数,它在x=0的某个邻域内满足关系式f(1+sinx)一3f(1-sinx)=8x+α(x),其中α(x)是当x→0时比x高阶的无穷小量,且f(x)在x=1处可导,求曲线y=f(x)在点(6,f(6))处的切线方程
设f(x)=,证明曲线y=f(x)在区间(ln2,+∞)上与x轴围成的区域有面积存在,并求此面积。
对行满秩矩阵Am×n,必有列满秩矩阵Bn×m,使AB=E.
已知A是n阶对称矩阵,B是n阶反对称矩阵,证明A—B2是对称矩阵。
设二阶常系数线性微分方程y"+ay’+by=cex有特解y=e2x+(1+x)ex,确定常数a,b,c,并求该方程的通解.
设A=,B=U-1A*U.求B+2E的特征值和特征向量.
设g(x)在x=0的某邻域内连续,且,又设f(x)在该邻域内存在二阶导数,且满足x2f”(x)-[f’(x)]2=xg(x),则()
随机试题
心理测验
关于血液的声衰减说法,正确的是
下部量过长见于
小肠上皮细胞吸收葡萄糖是离子梯度驱动的主动运输,驱动这种运输方式的离子梯度主要是Na+,所以可以说间接驱动这种转运的蛋白质是()。
纳税人在向税务机关办理纳税申报时,要附送财务会计报表。()
1+2雀巢速溶咖啡(零售包装)
针对应收账款是否实施函证程序,以下不对应收账款实施函证的情形中,恰当的有()。
在衡量通货膨胀时,通常使用最多、最普遍的指标是()。
材料1中国人讲究礼尚往来,逢年过节来往走动,互赠礼物,互祝安康,也是美好情谊的表达。特别是在结婚这样的喜事上更是讲究礼尚往来。操办婚礼无可厚非,但是动辄十几万甚至几十万的彩礼、几百几千的份子钱,亲朋好友连吃多天的婚宴酒席等大操大办、铺张浪费的不良
下列各类计算机程序语言中,不属于高级程序设计语言的是()。
最新回复
(
0
)