首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
A是2阶矩阵,2维列向量α1,α2线性无关,Aα1=α1+α2,Aα2=4α1+α2.求A的特征值和|A|.
A是2阶矩阵,2维列向量α1,α2线性无关,Aα1=α1+α2,Aα2=4α1+α2.求A的特征值和|A|.
admin
2019-07-22
75
问题
A是2阶矩阵,2维列向量α
1
,α
2
线性无关,Aα
1
=α
1
+α
2
,Aα
2
=4α
1
+α
2
.求A的特征值和|A|.
选项
答案
方法一 先找A的特征向量.由于α
1
,α
2
线性无关,每个2维向量都可以用它们线性表示.于是A的特征向量应是α
1
,α
2
的非零线性组合c
1
α
1
+c
2
α
2
,由于从条件看出α
1
不是特征向量,c
2
不能为0,不妨将其定为1,即设η=cα
1
+α
2
是A的特征向量,特征值为A,则Aη=Aη, Aη=A(cα
1
+α
2
)=c(α
1
+α
2
)+4α
1
+α
2
=(c+4)α
1
+(c+1)α
2
, 则 (c+4)α
1
+(c+1)α
2
=A(cα
1
+α), 得c+4=λc,c+1=λ.解得c=2或-2,对应的特征值λ分别为3,-1.|A|=-3. 方法二 A(α
1
,α)=( α
1
+α
2
,4α
1
+α
2
),用矩阵分解法,得 (α
1
+α
2
,4α
1
+α
2
)=[*] 记B=[*],则A(α
1
,α
2
)=(α
1
,α
2
)B. 由于α
1
,α
2
线性无关,(α
1
,α
2
)是可逆矩阵,于是A相似于B. A和B的特征值一样. [*] 得A的特征值为-1,3.|A|=-3.
解析
转载请注明原文地址:https://kaotiyun.com/show/FUN4777K
0
考研数学二
相关试题推荐
设方程组无解,则a=_______.
(其中ai>0(i=1,2,…,n))
设f(χ),g(χ)在区间[a,b]上连续,且g(χ)<f(χ)<m,则由曲线y=g(χ),y=f(χ)及直线χ=a,χ=b所围成的平面区域绕直线y=m旋转一周所得旋转体体积为().
设A,B为n阶矩阵,(1)求P.Q;(2)证明:当P可逆时,Q也可逆.
设f(x,y)=|x-y|φ(x,y),其中φ(x,y)在点(0,0)处连续且φ(0,0)=0,则f(x,y)在点(0,0)处
关于函数y=f(x)在点x0的以下结论正确的是()
设f(x)在[0,1]上二阶可导,且|f(x)|≤a,|f’’(x)|≤b,其中a,b都是非负常数,c为(0,1)内任意一点.(1)写出f(x)在x=c处带拉格朗日型余项的一阶泰勒公式;(2)证明:|f’(c)|≤2a+
若行列式的某个元素aij加1,则行列式的值增加Aij.
设,X是2阶矩阵.问AX-XA=E是否有解?其中E是2阶单位矩阵,说明理由.
(10年)设y1,y2是一阶线性非齐次微分方程y’+p(x)y=q(x)的两个特解,若常数λ,μ使λy1+μy2是该方程的解,λy1一μy2是该方程对应的齐次方程的解,则
随机试题
支气管扩张病变可分为:
以下药物停药后会损害食管的有()。
工程各参建单位填写的工程档案应以( )等为依据。
()是指销售产品或者提供服务取得的收入,是项目运营期现金流入的主体。
根据《水利水电工程标准施工招标文件》,由于发包人责任引起的工期延误事件发生后,若发包人要求承包人修订的进度计划仍应保证工程按期完工,则由于采取赶工措施所增加的费用应由()承担。
在工作中,团结合作原则要求银行业从业人员应该树立()。
从科学史看,理论再伟大,也只有在特定的范围内才是正确的。标准模型虽然即将被证实,但其依然位于微观世界,无法解释宏观世界中的万有引力。《新科学家》撰文写道:“希格斯玻色子(也称为‘上帝粒子’)是标准模型的最后一块拼图,但我们知道,这个模型之外,还有其他的粒子
ItisgenerallyrecognizedintheworldthatthesecondGulfWarinIraqisacrucialtestofhigh-speedWeb.Fordecades,Ameri
假设EXAM.DOC文件夹存储在EXAM1文件夹中,EXAM2文件夹存储在EXAM1文件夹中,EXAM1文件夹存储在D盘的根文件夹中,当前文件夹为EXAM2,那么,正确描述EXAM.DOC文件的相对路径为(41)。
Asthemountainswerecoveredwitha______ofcloud,wecouldn’tseetheirtops.
最新回复
(
0
)