首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
A是2阶矩阵,2维列向量α1,α2线性无关,Aα1=α1+α2,Aα2=4α1+α2.求A的特征值和|A|.
A是2阶矩阵,2维列向量α1,α2线性无关,Aα1=α1+α2,Aα2=4α1+α2.求A的特征值和|A|.
admin
2019-07-22
56
问题
A是2阶矩阵,2维列向量α
1
,α
2
线性无关,Aα
1
=α
1
+α
2
,Aα
2
=4α
1
+α
2
.求A的特征值和|A|.
选项
答案
方法一 先找A的特征向量.由于α
1
,α
2
线性无关,每个2维向量都可以用它们线性表示.于是A的特征向量应是α
1
,α
2
的非零线性组合c
1
α
1
+c
2
α
2
,由于从条件看出α
1
不是特征向量,c
2
不能为0,不妨将其定为1,即设η=cα
1
+α
2
是A的特征向量,特征值为A,则Aη=Aη, Aη=A(cα
1
+α
2
)=c(α
1
+α
2
)+4α
1
+α
2
=(c+4)α
1
+(c+1)α
2
, 则 (c+4)α
1
+(c+1)α
2
=A(cα
1
+α), 得c+4=λc,c+1=λ.解得c=2或-2,对应的特征值λ分别为3,-1.|A|=-3. 方法二 A(α
1
,α)=( α
1
+α
2
,4α
1
+α
2
),用矩阵分解法,得 (α
1
+α
2
,4α
1
+α
2
)=[*] 记B=[*],则A(α
1
,α
2
)=(α
1
,α
2
)B. 由于α
1
,α
2
线性无关,(α
1
,α
2
)是可逆矩阵,于是A相似于B. A和B的特征值一样. [*] 得A的特征值为-1,3.|A|=-3.
解析
转载请注明原文地址:https://kaotiyun.com/show/FUN4777K
0
考研数学二
相关试题推荐
设方程组无解,则a=_______.
求
求
设f(χ)连续,且=e3,且f′(0)存在,求f′(0).
若f(χ)在χ=0的某邻域内二阶连续可导,且=1,则下列正确的是().
设函数f(χ)在[0,a]上连续,在(0,a)内二阶可导,且f(0)=0,f〞(χ)<0,则在(0,a]上().
设α=为A=的逆矩阵A-1的特征向量.求χ,y,并求A-1对应的特征值μ.
飞机在机场开始滑行着陆,在着陆时刻已失去垂直速度,水平速度为v0(m/s),飞机与地面的摩擦系数为μ,且飞机运动时所受空气的阻力与速度的平方成正比,在水平方向的比例系数为kx(kg.s2/m2),在垂直方向的比例系数为ky(kg.s2/m2).设飞机的质量
设f(x)在x=a处的左右导数都存在,则f(x)在x=a处().
顶角为60°,底圆半径为口的正圆锥形漏斗内盛满水,下接底圆半径为b(b<a)的圆柱形水桶(假设水桶的体积大于漏斗的体积),水由漏斗注入水桶,问当漏斗水平面下降速度与水桶水平面上升速度相等时,漏斗中水平面高度是多少?
随机试题
根据以下资料,回答以下问题。2010年上半年,全国原油产量为9848万吨,同比增长5.3%,上年同期为下降1%。进口原油11797万吨(海关统计),增长30.2%。原油加工量20586万吨,增长17.9%,增速同比加快16.4个百分点。成品油产量
投资者在选择证券经纪人时主要根据哪些标准,不正确的是()
“至虚有盛候”是指
关于胸部损伤的急救护理,下列选项错误的处理是()。
下列各项中,属于导致企业财产物资账存数与实存数不符的原因有()。
班主任开展教育工作的前提和基础是()
我国《刑法》第一百二十九条规定:“依法配备公务用枪的人员,丢失枪支不及时报告,造成严重后果的,处三年以下有期徒刑或者拘役。”关于该刑法规则的构成要素,说法正确的是
设A为n(n≥2)阶可逆矩阵,交换A的第1行与第2行得矩阵B,若A*,B*分别为A,B的伴随矩阵,则().
[*]
TheUnitedStatestakesabiggershareoftheinternationalstudentmarketthananyothercountry.However,with22%ofthetota
最新回复
(
0
)