首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=且A~B。 (1)求a; (2)求可逆矩阵P,使得P—1AP=B.
设A=且A~B。 (1)求a; (2)求可逆矩阵P,使得P—1AP=B.
admin
2016-09-30
39
问题
设A=
且A~B。
(1)求a; (2)求可逆矩阵P,使得P
—1
AP=B.
选项
答案
(1)因为A~B,所以tr(A)=tr(B),即2+a+0=1+(一1)+2,于是a=0. (2)由|λE—Aλ=[*]=(λ+1)(λ一1)(λ一2)=0得A,B的特征值为 λ
1
=一1,λ
2
=1,λ
3
=2. 当λ=一1时,由(一E—A)X=0即(E+A)X=0得ξ
1
=(0,一1,1)
T
; 当λ=1时,由(E一A)X=0得ξ
2
=(0,1,1)
T
; 当λ=一1时,由(一E—B)X=0即(E+B)X=0得η
1
=(0,1,2)
T
; 当λ=1时,由(E一g)X=0得η
1
=(1,0,0)
T
; [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/Ddw4777K
0
考研数学一
相关试题推荐
设A为三阶矩阵,其特征值为λ1=-2,λ2=λ3=1,其对应的线性无关的特征向量为α1,α2,α3,令P=(4α1,α2-α3,α2+2α3),则P-1(A*+3E)P为_______.
设y=ex为微分方程xy’+P(x)y=x的解,求此微分方程满足初始条件y(ln2)=0的特解.
设A为二阶矩阵,P=(α,Aα),其中α是非零向量且不是A的特征向量.若A2α+Aα-6α=0,求P-1AP,并判断A是否相似于对角矩阵.
已知函数f(x)的定义域为(0,+∞),且满足2f(x)+,求f(x),并求曲线y=f(x),y=1/2,y=及y轴所围图形绕x轴旋转一周而成的旋转体的体积.
设,若向量组α1,α2,α3与α1,α2,α4等价,则λ的取值范围是().
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记(I)证明二次型f对应的矩阵为2ααT+ββT;(Ⅱ)若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y12
设三阶矩阵A=(α1,α2,α3)有3个不同的特征值,且α3=α1+2α2.(I)证明:r(A)=2;(Ⅱ)若β=α1+α2+α3,求方程组Ax=β的通解.
设函数y=y(x)在(-∞,+∞)内具有二阶导数,且y’≠0,x=x(y)是y=y(x)的反函数.求变换后的微分方程满足初始条件y(0)=0,y’(0)=3/2的解.
已知(1)计算行列式|A|.(2)当实数α为何值时,方程组Ax=β有无穷多解,并求其通解.
微分方程y〞+y=-2x的通解为_______.
随机试题
由高层管理者、部门经理和人力资源部专员等人员一起预测和判断企业在某段时间对人力资源的需求的方法是【】
连接件切应力计算的基础是假设()。
急性炎症性脱髓鞘性多发性神经病的主要临床表现是
A.多发于青春期或更年期妇女,出血无规律,基础体温测定为单相B.黄体发育良好,但萎缩过程延长C.黄体期孕激素分泌不足,月经周期缩短D.月经中期有少量出血E.排卵正常,雌激素水平较高黄体功能不全功血者()
根据我国有关法律规定,在下列哪些情形下仲裁协议无效?()
属于施工质量管理环境因素的有()。
材料:班主任王老师就一位学生的化妆问题,找她谈了一次话。老师:“为您服务”节目看了吗?有趣吗?学生:有趣。老师:那个要大家评论四张妇女化妆像好坏的节目,你觉得怎么样?你能讲出她们的优缺点吗?学生:这还不晓得
经理:法官:公务员
什么是法定存款准备金政策?其效果和局限性如何?
若要在询课程名称为“ACCESS”的记录,在查询设汁视图时应字段的条件中,表达式不正确的是()。
最新回复
(
0
)