首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶矩阵,λ1和λ2是A的两个不同的特征值,x1,x2是分别属于λ1和λ2的特征向量.证明:x1+x2不是A的特征向量.
设A为n阶矩阵,λ1和λ2是A的两个不同的特征值,x1,x2是分别属于λ1和λ2的特征向量.证明:x1+x2不是A的特征向量.
admin
2018-09-25
35
问题
设A为n阶矩阵,λ
1
和λ
2
是A的两个不同的特征值,x
1
,x
2
是分别属于λ
1
和λ
2
的特征向量.证明:x
1
+x
2
不是A的特征向量.
选项
答案
反证法 假设x
1
+x
2
是A的特征向量,则存在数λ,使得A(x
1
+x
2
)=λ(x
1
+x
2
),则 (λ-λ
1
)x
1
+(λ-λ
2
)x
2
=0. 因为λ
1
≠λ
2
,所以x
1
,x
2
线性无关,则 [*] =>λ
1
=λ
2
.矛盾.
解析
转载请注明原文地址:https://kaotiyun.com/show/Deg4777K
0
考研数学一
相关试题推荐
设α,β均为3维列向量,βT是β的转置矩阵,如果则αTβ=___________.
若A是对称矩阵,B是反对称矩阵,则AB是反对称矩阵的充要条件是AB=BA.
设n维列向量α1,α2,…,αn-1,β线性无关,且与非零向量β1,β2都正交.证明β1,β2线性相关,α1,α2,…,αn-1,β1线性无关.
设A是n阶矩阵,α1,α2,α3是n维列向量,且α1≠0,Aα1=kα1,Aα2=lα1+kα2,Aα3=lα2+kα3,l≠0,证明α1,α2,α3线性无关.
设α1=(1,1)T,α2=(1,0)T和β1=(2,3)T,β2=(3,1)T,求由α1,α2到β1,β2的过渡矩阵.
设n(n≥3)阶矩阵A=,如伴随矩阵A*的秩r(A*)=1,则a为
已知f(x)=,证明f′(x)=0有小于1的正根.
证明:与基础解系等价的线性无关的向量组也是基础解系.
已知3阶矩阵A的第1行元素全是1,且(1,1,1)T,(1,0,一1)T,(1,一1,0)T是A的3个特征向量,求A.
随机试题
同病毒无关的肿瘤是
A.心理评估B.病理评估C.认识评估D.感知评估E.社会评估对病人进行社会关系、社会经济状况、生活方式的评估属于
临床窝沟封闭术失败的原因最主要是
A.泽泻B.绿豆C.冬虫夏草D.大蒜瓣E.荜澄茄与吴茱萸同贮的是()。
国内甲出版社向海外乙出版社输出《经络解说》一书,甲出版社起草的著作权贸易合同应包括()等内容。
进入人体无菌组织或器官的内窥镜、活检钳应达到哪种水平?()
(2011年简答52)简述渎职罪的概念和构成要件。
Writeanessayof160—200wordsbasedonthefollowingdrawing.Inyouressay,youshould1)describethedrawingbriefly,
下面是关于UART的叙述,其中错误的是()。
Thecostofplantandequipmentincludesallexpendituresreasonableandnecessaryinacquringtheassetandplacingitinapos
最新回复
(
0
)