首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶矩阵,λ1和λ2是A的两个不同的特征值,x1,x2是分别属于λ1和λ2的特征向量.证明:x1+x2不是A的特征向量.
设A为n阶矩阵,λ1和λ2是A的两个不同的特征值,x1,x2是分别属于λ1和λ2的特征向量.证明:x1+x2不是A的特征向量.
admin
2018-09-25
48
问题
设A为n阶矩阵,λ
1
和λ
2
是A的两个不同的特征值,x
1
,x
2
是分别属于λ
1
和λ
2
的特征向量.证明:x
1
+x
2
不是A的特征向量.
选项
答案
反证法 假设x
1
+x
2
是A的特征向量,则存在数λ,使得A(x
1
+x
2
)=λ(x
1
+x
2
),则 (λ-λ
1
)x
1
+(λ-λ
2
)x
2
=0. 因为λ
1
≠λ
2
,所以x
1
,x
2
线性无关,则 [*] =>λ
1
=λ
2
.矛盾.
解析
转载请注明原文地址:https://kaotiyun.com/show/Deg4777K
0
考研数学一
相关试题推荐
设A为n阶可逆矩阵,证明:(A*)*=|A|n-2A.
设A.B是n阶矩阵,E—AB可逆,证明E—BA可逆.
设有级数U:vn,求证:(Ⅰ)若U,V均绝对收敛,则(un+vn)绝对收敛;(Ⅱ)若U绝对收敛,V条件收敛,则(un+vn)条件收敛.
设n维列向量α1,α2,…,αn-1,β线性无关,且与非零向量β1,β2都正交.证明β1,β2线性相关,α1,α2,…,αn-1,β1线性无关.
设A是n阶矩阵,α1,α2,α3是n维列向量,且α1≠0,Aα1=kα1,Aα2=lα1+kα2,Aα3=lα2+kα3,l≠0,证明α1,α2,α3线性无关.
设A是n阶矩阵,若存在正整数k,使线性方程组Akx=0有解向量α,且Ak-1α≠0.证明:向量组α,Aα,…,Ak-1α是线性无关的.
设α1=(1,2,1)T,α2=(2,3,a)T,α3=(1,a+2,-2)T,若β1=(1,3,4)T可以由α1,α2,α3线性表出,β2=(0,1,2)T不能由α1,α2,α3线性表出,则a=__________.
证明D==(x1+x2+x3)(xi-xj).
求曲线y=+ln(1+ex)的渐近线方程.
求齐次方程组的基础解系.
随机试题
A、叶酸B、维生素B12C、硫酸亚铁D、雄性激素E、白消安治疗慢性再生障碍性贫血,应首选
依法取得医师资格,但不从事医师职业而从事教学、科研的人员
下列有关审计独立性的说法,体现审计业务工作上的独立性的有()。
西单公司是一家商业企业,主要从事商品批发业务,该公司2011年实际和2012年预计的主要财务数据如下(单位:万元):其他资料如下:(1)该公司的全部资产均为变动资产,流动负债均为变动负债,长期负债均为筹资性负债,财务费用全部为利息费用。
根据《最高人民法院关于审理旅游纠纷案件适用法律若干问题的规定》,旅游经营者已投保责任险,旅游者因保险责任事故仅起诉旅游经营者的,人民法院可以应当事人的请求将保险公司列为第三人。下列表述错误的是()。
社会本位与个人本位是高等教育的两种价值观。()
要广泛听取人民群众的意见和要求,虚心接受人民群众的批评和监督。同时,要把人民群众在实践中创造出来的好方法、好经验及时加以总结和推广,使之制度化、法律化。这就是()。
[材料一]在近代中国历史上,“外交”同“屈辱”总是联系在一起的。周恩来曾义愤填膺地说:“中国的反动分子在外交上一贯是神经衰弱怕帝国主义的。清朝的西太后、北洋政府的袁世凯、国民党的蒋介石,哪一个不是跪在地上办外交的呢?中国一百年来的外交史是一部屈辱的外交史。
Howdidthemancuthimself?
TheOutdoorCentreOpeningtimesWatersports:10am-6pmPlayPark:10am-5.30pmEntrance/Carparkfees
最新回复
(
0
)