首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为4阶实对称矩阵,且A2+A=0.若A的秩为3,则A相似于
设A为4阶实对称矩阵,且A2+A=0.若A的秩为3,则A相似于
admin
2017-04-24
29
问题
设A为4阶实对称矩阵,且A
2
+A=0.若A的秩为3,则A相似于
选项
A、
B、
C、
D、
答案
D
解析
设λ为A的特征值且ξ为对应的特征向量,则有A
m
ξ=λ
m
ξ(m=1,2,…),故有
(A
2
+A)ξ=Oξ=0,
即 (λ
2
+λ)ξ=0,
因ξ≠0,得λ
2
+λ=0,从而有λ=0或λ=一1,又因r(A)=3,所以A的非零特征值有3个,有1个特征值为0,即A的全部特征值为:一1,一1,一1,0,所以只有选项(D)正确.
设A按列分块为A=[α
1
,α
2
,α
3
,α
4
],由r(A)=3,知A的列向量组的极大无关组含3个向量,不妨设α
1
,α
2
,α
3
是A的列向量组的极大无关组.由于A
2
=一A,即
A[α
1
,α
2
,α
3
,α
4
]=一[α
1
,α
2
,α
3
,α
4
],
即 [Aα
1
Aα
2
Aα
3
Aα
4
]=[一α
1
一α
2
一α
3
一α
4
],
得Aα
j
=一α
j
,j=1,2,3,4.
由此可知一1是A的特征值值且α
1
,α
2
,α
3
为对应的3个线性无关的特征向量,故一1至少是A的3重特征值.
而r(A)=3<4,知0也是A的一个特征值,于是知A的全部特征值为:一1,一1,一1,0,且每个特征值对应的线性无关特征向量个数正好等于该特征值的重数,故A相似于对角矩阵D=diag(一1,一1,一1,0),故选项(D)正确.
转载请注明原文地址:https://kaotiyun.com/show/Dft4777K
0
考研数学二
相关试题推荐
设f(x)二阶可导,x=1为f(x)的极值点,且f(x)满足f"(x)+f’(x)=1+x-ex,则x=1为f(x)的________(填极大值点或极小值点).
求∫1/(1-x2)ln(1+x/1-x)dx.
∫dx/(2x+3)2=________.
[*]
设f(x)=x2-x-2在[-1,2]上满足罗尔定理的条件,则中值ξ=________.
设非负函数y=y(x)(x≥0)满足微分方程xy"-y’+2=0,当曲线y=y(x)过原点时,其与直线x=1及y=0围成平面区域的面积为2,求D绕y轴旋转所得旋转体体积。
假设对于一切实数x,函数f(x)满足等式f’(x)=x2+∫0xf(t)dt,且f(0)=2,则f(x)=________。
计算二重积分,其中D是由直线y=x-1和抛物线y2=2x+6所围成的闭区域.
已知函数f(x,y)在点(0,0)某邻域内连续,且,则
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:当ξTξ=1时,A是不可逆矩阵.
随机试题
下列关于肺泡表面活性物质的表述,错误的是()
临床上使用两个电子线野相邻照射时,则
A.分泌型和膜型B.血清型和分泌型C.血清型和膜型D.生物功能上的概念E.化学结构上的概念免疫球蛋白是
男性,24岁,2天前肛门周围持续性跳痛,皮肤硬结红肿,并有局部压痛,可能出现了
小样本随机抽样中较准确而且便于实行的方法是
A.滴制法B.热熔法C.乳化法D.塑制法E.压灌法浓缩丸的制备可选用
某空调制造公司,它属于中小型企业,在市场竞争中属于“二级梯队”的阵营,公司真正的发展从1996年开始,公司过去五年的年平均增长率为100%。但是公司的领导意识到国内空调业的竞争日益激烈,产业的“保本点”在逐年上升,而且公司的增长率正趋于下降态势,如果不改变
気分
Whereistheconversation?
Ithasbeenprovenmanytimesthatfarmersfarmtheirownlandmorecarefullyandproductivelythantheycultivatesomeoneelse’
最新回复
(
0
)