首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设曲线y=f(x),其中y=(x)是可导函数,且f(x)>0。已知曲线y=f(x)与直线y=0,x=1及x=t(t>1)所围成的曲边梯形绕x轴旋转一周所得立体的体积值是该曲边梯形面积值的πt倍,求该曲线方程。
设曲线y=f(x),其中y=(x)是可导函数,且f(x)>0。已知曲线y=f(x)与直线y=0,x=1及x=t(t>1)所围成的曲边梯形绕x轴旋转一周所得立体的体积值是该曲边梯形面积值的πt倍,求该曲线方程。
admin
2018-12-19
48
问题
设曲线y=f(x),其中y=(x)是可导函数,且f(x)>0。已知曲线y=f(x)与直线y=0,x=1及x=t(t>1)所围成的曲边梯形绕x轴旋转一周所得立体的体积值是该曲边梯形面积值的πt倍,求该曲线方程。
选项
答案
根据旋转体的体积公式 V=∫
1
t
πf
2
(x)dx=π∫
1
t
f
2
(x)dx, 而曲边梯形的面积为s=∫
1
t
f(x)dx,则由题意可知V=πts可以得到 V=π∫
1
t
f
2
(x)dx=πt∫
1
t
f(x)dx, 因此可得 ∫
1
t
f
2
(x)dx=t∫
1
t
f(x)dx。 上式两边同时对t求导可得 f
2
(t)=∫
1
t
f(x)dx+tf(t), 即有 f
2
(t)一tf(t)=∫
1
t
f(x)dx。 继续求导可得 2f(t)f’(t)—f(t)一tf’(t)=f(t), 化简 [2f(t)一t]f’(t)=2f(t), 即有[*] 解这个微分方程得 [*] 在f
2
(t)一tf(t)=∫
1
t
f(x)dx中令t=1,则f
2
(1)一f(1)=0,又f(t)>0,即f(1)=1,将其代入[*],得[*]。所以[*]。 因此该曲线方程为 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/Djj4777K
0
考研数学二
相关试题推荐
设f(x),g(x)在[a,b]上连续,且满足∫axf(t)dt≥∫axg(x)dt,x∈(a,6),∫abf(t)dt=∫abg(t)dt证明∫abxf(x)dx≤∫abxg(x)dx.
求二重积分其中D是由曲线r=2(1+cosθ)的上半部分与极轴所围成的区域.
设D是由曲线,直线x=a(a>0)及x轴所围成的平面图形,Vx,Vy分别是D绕x轴,y轴旋转一周所得旋转体的体积,若Vy=10Vx,求a的值.
证明函数恒等式
(2007年)如图,连续函数y=f(χ)在区间[-3,-2],[2,3]上的图形分别是直径为1的上、下半圆周,在区间[-2,0],[0,2]上的图形分别是直径为2的下、上半圆周.设F(χ)=∫0χf(t)dt,则下列结论正确【】
(1998年)利用代换y=将方程y〞cosχ-2y′sinχ+3ycosχ=eχ化简,并求出原方程的通解.
(1994年)求微分方程y〞+a2y=sinχ的通解,其中常数a>0.
设A为4阶矩阵,其秩r(A)=3,那么r((A*)*)为()
设φ(x)是以2π为周期的连续函数,且Ф’(x)=φ(x),Ф(0)=0.(1)求方程y’+ysinx=φ(x)ecosx的通解;(2)方程是否有以2π为周期的解?若有,请写出所需条件,若没有,请说明理由.
随机试题
支气管动脉栓塞术的并发症有()。
图示两根简支梁,一根材料为钢,另一根材料为铝。已知它们的抗弯刚度EI相同,在相同外力作用下,两者的不同之处为( )。
若政府对市场实行高于均衡价格的最低限价,会带来的后果是()。
发生较大质量事故,事故单位要在()小时内向有关单位提出书面报告。
以募集方式设立股份公司的,发起人认购的股份不得少于公司股份总数的30%,其余部分向社会公开募集。()
下列关于商用房贷款的表述,错误的是()。
预期收入理论带来的问题包括()。
下列关于期权的说法,正确的有()。
设都是正项级数.试证:(1)若收敛;(2)若收敛,且un单调减少,则收敛;(3)若都收敛;(4)若收敛.
ThomasR.SmithDriversCo.3489GreeneAve.Olympia,WA98502DearMr.Smith,Iwasvery(141)toreadyourletterofAugust1
最新回复
(
0
)