首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1=(1,2,0)T,α2=(1,a+2,-3a)T,α3=(-1,-b-2.a+2b)T.β=(1,3,-3)T.试讨论当a,b为何值时, (1)β不能用α1,α2,α3线性表示; (2)β能用α1,α2,α3唯一地线性表示,求表示式
设α1=(1,2,0)T,α2=(1,a+2,-3a)T,α3=(-1,-b-2.a+2b)T.β=(1,3,-3)T.试讨论当a,b为何值时, (1)β不能用α1,α2,α3线性表示; (2)β能用α1,α2,α3唯一地线性表示,求表示式
admin
2018-06-27
61
问题
设α
1
=(1,2,0)
T
,α
2
=(1,a+2,-3a)
T
,α
3
=(-1,-b-2.a+2b)
T
.β=(1,3,-3)T.试讨论当a,b为何值时,
(1)β不能用α
1
,α
2
,α
3
线性表示;
(2)β能用α
1
,α
2
,α
3
唯一地线性表示,求表示式;
(3)β能用α
1
,α
2
,α
3
线性表示,且表示式不唯一,求表示式的一般形式.
选项
答案
记A=(α
1
,α
2
,α
3
),则问题化归线性方程组AX=β解的情形的讨论及求解问题了. [*] (1)a=0(b任意)时 [*] 方程组AX=β无解,β不能用α
1
,α
2
,α
3
线性表示. (2)当a≠0,a≠b时,r(A|β)=r(A)=3,方程组AX=β唯一解,即β可用α
1
,α
2
,α
3
唯一表示. [*] AX=β的解为 [*] (3)当a=b≠0时r(A|β)=r(A)=2,AX=β有无穷多解,即β可用α
1
,α
2
,α
3
线性表示,且表示式不唯一. [*] AX=β有特解[*],而(0,1,1)
T
构成AX=0的基础解系,AX=β的通解为 [*]+c(0,1,1)
T
,c任意, 即β=[*]α
2
+cα
3
,c任意.
解析
转载请注明原文地址:https://kaotiyun.com/show/Dlk4777K
0
考研数学二
相关试题推荐
确定常数a,使向量组α1=(1,1,a),α2=(1,a,1),α3一(a,1,1)可由向量组β1=(1,1,a)。β2=(-2,a,4),β2=(-2,a,a)线性表示,但向量组β1,β2,β3不能由向量组α1,α2,α3线性表示.
已知A,B为3阶矩阵,且满足2A-1B=B一4E,其中E是3阶单位矩阵.(1)证明:矩阵A-2E可逆;(2)若,求矩阵A.
已知向量组α1=(1,2,=1,1),α2=(2,0,t,0),α3=(0,-4,5,-2)的秩为2,则t=________.
设向量组I:α1,α2,…,αr可由向量组Ⅱ:β1,β2…,βs线性表示,则
设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且f’(x)>0.若极限存在,证明:(1)在(a,b)内f(x)>0;(2)在(a,b)内存在点ξ,使;(3)在(a,b)内存在与(2)中ξ相异的点η,使f’(η)(b2-a2)=。
设0<x1<3,xn+1=(n=1,2,…),证明数列{xn}的极限存在,并求此极限.
试证明n维列向量组α1,α2,…αn线性无关的充分必要条件是
设A为n阶矩阵,对于齐次线性方程(I)Anx=0和(Ⅱ)An+1x=0,则必有
已知4元齐次线性方程组的解全是4元方程(ii)x1+x2+x3=0的解,求齐次方程(ii)的解.
设A3×3=[α1,α2,α3],方程组Ax=β有通解kξ+η=kE1,2,一3]T+[2,一1,1]T,其中k是任意常数.证明:方程组(α1,α2)x=β有唯一解,并求该解;
随机试题
T细胞分化成熟的场所是
对于采用单价合同的招标工程,如投标书中有明显的数字计算错误,业主有权先做修改再评标,当总价和单价的计算结果不一致时,正确的做法是()。
客户对于管理财产有“三不”,以下说法正确的是()。
《巴塞尔新资本协议》中要求客户评级能够做到,不同信用等级的客户的违约风险随信用等级的下降而呈现()的趋势。
ABC公司研制成功一台新产品,现在需要决定是否大规模投产,有关资料如下:(1)公司的销售部门预计,如果每台定价3万元,销售量每年可以达到10000台;销售量不会逐年上升,但价格可以每年提高2%。生产部门预计,变动制造成本每台2.1万元,每年增加2
从所给的四个选项中,选择最合适的一个填入问号处,使之符合已呈现的规律性。
A.条件(1)充分,但条件(2)不充分。B.条件(2)充分,但条件(1)不充分。C.条件(1)和(2)单独都不充分,但条件(1)和条件(2)联合起来充分。D.条件(1)充分,条件(2)也充分。E.条件(1)和(2)单独都不充分,条件(1)和条件(2
在我国灿烂的历史文化宝库中,有许多言简意赅的成语,凝结着深刻的生活智慧。下列对成语的哲学寓意理解正确的有()①刻舟求剑——静止是认识事物的基础②画龙点睛——重视解决主要矛盾③见仁见智——真理是相对的有条件的④胸有成竹——意识具有能动作用
设X~t(2),则服从的分布为().
Ulyssesisarepresentativeof
最新回复
(
0
)