首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1=(1,2,0)T,α2=(1,a+2,-3a)T,α3=(-1,-b-2.a+2b)T.β=(1,3,-3)T.试讨论当a,b为何值时, (1)β不能用α1,α2,α3线性表示; (2)β能用α1,α2,α3唯一地线性表示,求表示式
设α1=(1,2,0)T,α2=(1,a+2,-3a)T,α3=(-1,-b-2.a+2b)T.β=(1,3,-3)T.试讨论当a,b为何值时, (1)β不能用α1,α2,α3线性表示; (2)β能用α1,α2,α3唯一地线性表示,求表示式
admin
2018-06-27
79
问题
设α
1
=(1,2,0)
T
,α
2
=(1,a+2,-3a)
T
,α
3
=(-1,-b-2.a+2b)
T
.β=(1,3,-3)T.试讨论当a,b为何值时,
(1)β不能用α
1
,α
2
,α
3
线性表示;
(2)β能用α
1
,α
2
,α
3
唯一地线性表示,求表示式;
(3)β能用α
1
,α
2
,α
3
线性表示,且表示式不唯一,求表示式的一般形式.
选项
答案
记A=(α
1
,α
2
,α
3
),则问题化归线性方程组AX=β解的情形的讨论及求解问题了. [*] (1)a=0(b任意)时 [*] 方程组AX=β无解,β不能用α
1
,α
2
,α
3
线性表示. (2)当a≠0,a≠b时,r(A|β)=r(A)=3,方程组AX=β唯一解,即β可用α
1
,α
2
,α
3
唯一表示. [*] AX=β的解为 [*] (3)当a=b≠0时r(A|β)=r(A)=2,AX=β有无穷多解,即β可用α
1
,α
2
,α
3
线性表示,且表示式不唯一. [*] AX=β有特解[*],而(0,1,1)
T
构成AX=0的基础解系,AX=β的通解为 [*]+c(0,1,1)
T
,c任意, 即β=[*]α
2
+cα
3
,c任意.
解析
转载请注明原文地址:https://kaotiyun.com/show/Dlk4777K
0
考研数学二
相关试题推荐
已知向量组α1=(1,2,=1,1),α2=(2,0,t,0),α3=(0,-4,5,-2)的秩为2,则t=________.
设A为3阶矩阵,α1,α2为A的分别属于特征值-1,1的特征向量,向量α3满足Aα3=α2+α3.(1)证明α1,α2,α3线性无关;(2)令P=(α1,α2,α3),求P-1AP.
设向量组α1,α2,α3线性无关,向量β1可由α1,α2,α3线性表示,而向量β2不能由α1,α2,α3线性表示,则对于任意常数k,必有
设函数f(x)在[0,π]上连续,且|f(x)dx=0,|f(x)cosxdx=0,试证明:在(0,π)内至少存在两个不同的点ξ1,ξ2,使f(ξ1)=f(ξ0)=0.
对于线性方程组讨论λ为何值时,方程组无解、有唯一解和有无穷多组解.在方程组有无穷多组解时,试用其导出组的基础解系表示全部解.
a=一5是齐次方程组有非零解的
已知A是2×4矩阵,齐次方程组Ax=0的基础解系是η1=(1,3,0,2)T,η2=(1,2,一1,3)T,又知齐次方程组Bx=0的基础解系是β1=(1,1,2,1)T,β2=(0,一3,1,α)T,)如果齐次线性方程组Ax=0与BBx=0有非零公共解
设A是m×n矩阵,且方程组Ax=b有解,则
随机试题
A.能在无生命培养基中生长繁殖的最小微生物B.与革兰阴性菌有密切关系的专性真核细胞内寄生的原核微生物C.在生物学上的位置介于细菌和原虫之间D.属于猫科动物的肠道球虫E.为双相单细胞酵母菌弓形虫
阴证疮疡外敷药物宜首选()
下列说法正确的是
现有甲、乙两个互斥方案,其规模相同或基本相同,如果其中一个方案的()时,则该方案是最理想的方案。
个人贷款客户的每月现金收入高于每月贷款还本付息的金额时,贷款的归还较有保障。()
如图所示,是甲、乙、丙三个物体的υ-t图象,则下列说法正确的是()。
音乐成为一种治疗方法起源于二战期间。当时美国军队医生发现,聆听音乐不仅能改善伤病员的情绪,也能降低感染率和死亡率,这种现象引起了社会的关注。最初,音乐家和临床医生们尝试将音乐用于临床治疗中,并通过临床研究证实其安全性和有效性。之后,随着心理学、生理学、神经
法的实施方式按()可以分为法的遵守、法的执行、法的适用。
StandardEnglishisthevarietyofEnglishwhichisusuallyusedinprintandwhichisnormallytaughtinschoolsandtonon-nat
当条件为5
最新回复
(
0
)