首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为3阶矩阵,α1,α2为A的分别属于特征值-1,1的特征向量,向量α3满足Aα3=α2+α3. (1)证明α1,α2,α3线性无关; (2)令P=(α1,α2,α3),求P-1AP.
设A为3阶矩阵,α1,α2为A的分别属于特征值-1,1的特征向量,向量α3满足Aα3=α2+α3. (1)证明α1,α2,α3线性无关; (2)令P=(α1,α2,α3),求P-1AP.
admin
2014-01-26
84
问题
设A为3阶矩阵,α
1
,α
2
为A的分别属于特征值-1,1的特征向量,向量α
3
满足Aα
3
=α
2
+α
3
.
(1)证明α
1
,α
2
,α
3
线性无关;
(2)令P=(α
1
,α
2
,α
3
),求P
-1
AP.
选项
答案
(1)令 x
1
α
1
+x
2
α
2
+x
3
α
3
=0. ① 因为Aα
1
1=-α
1
, Aα
2
=α
2
, Aα
3
=α
2
+α
3
, 用A左乘①得 -x
1
α
1
+x
2
α
2
+x
3
α
3
=0 ② ①-②得 2x
1
α
1
-x
3
α
2
=0 ③ 因为α
1
,α
2
分别为A的不同特征值对应的特征值向量,所以线性无关,于是x
1
=x
3
=0. 代入①得x
2
口2α
2
=0,又α
2
≠0,故x
2
=0.即有α
1
,α
2
,α
3
线性无关. (2)由 AP=A(α
1
,α
2
,α
3
)=(Aα
1
,Aα
2
,Aα
3
)=(-α
1
,α
2
,α
2
+α
3
) [*] 由(1)知P可逆,故P
-1
AP=[*]
解析
[分析] 一个向量组的线性无关性常用定义证明,而且根据本题的条件容易想到用A左乘等式两边.
转载请注明原文地址:https://kaotiyun.com/show/oQ34777K
0
考研数学二
相关试题推荐
[2018年]已知总体X的密度函数为X1,X2,…,Xn为来自总体X的简单随机样本,σ为大于0的参数,记σ的最大似然估计量为求
(2014年)设函数f(x),g(x)在区间[a,b]上连续,且f(x)单调增加,0≤g(x)≤1,证明:(Ⅰ)0≤∫axg(t)dt≤x一a,x∈[a,b](Ⅱ)≤∫abf(x)g(x)dx。
(87年)设y=sinχ,0≤χ≤,问t为何值时,图2.4中阴影部分的面积S1与S2之和S最小?最大?
(2005年)设二维随机变量(X,Y)的概率密度为求:(Ⅰ)(X,Y)的边缘概率密度fX(x),fY(y);(Ⅱ)Z=2X-Y的概率密度fZ(z);(Ⅲ)
(2006年)在xOy坐标平面上,连续曲线L过点M(1,0),其上任意点P(x,y)(x≠0)处的切线斜率与直线OP的斜率之差等于ax(常数a>0)。(I)求L的方程;(Ⅱ)当L与直线y=ax所围平面图形的面积为时,确定a的值。
[2008年]设n元线性方程组AX=b,其中当a为何值时,该方程组有无穷多解,并求通解.
(1998年)设X1,X2,X3,Xn是来自正态总体N(0,22)的简单随机样本,X=a(X1-2X2)2+b(3X3-4X4)2。则当a=______,b=_______时,统计量X服从χ2分布,其自由度为_______。
[2003年]设可微函数f(x,y)在点(x0,y0)处取得极小值,则下列结论正确的是().
一商店经销某种商品,每周的进货量X与顾客对该种商品的需求量Y是两个相互独立的随机变量,且都服从区间[10,20]上的均匀分布.商店每售出一单位商品可得利润1000元;若需求量超过了进货量,可以其他商店调剂供应,这时每单位商品的售出获利润为500元.试求此商
[2003年]设随机变量X和Y的相关系数为0.9,若Z=X-0.4,则Y和Z的相关系数为_________.
随机试题
试述价值观在管理中的作用。
女性,45岁。有轻度甲状腺机能亢进病史2年,并患有支气管哮喘,合用下列药物半年,出现皮肤变薄、多毛、糖尿,应系哪一种药物的不良反应
下述组合错误的是
吸水井的容积应大于最大一台水泵3min的出水量。()
操作风险可以分为由人员、系统、流程和内部事件所引发的四类风险。()
个人外汇储蓄账户资金境内划转,符合规定办理的是()。
小强妈妈望子成龙心切,小强一上幼儿园,才刚刚学会认字,小强妈妈就给他报了一个作文班。上小学后,小强妈妈明知道儿子不喜欢弹钢琴,还是给他报了钢琴兴趣班。这说明小强妈妈在教育过程中违背了儿童身心发展的()。
晓静决心考研,但眼看考试时间临近,却常常内心纠结,无法静心学习,因此寻求心理咨询的帮助。她急切地对咨询师说:“我真的很想考上研究生,那意味着我今后会有更好的前途,能找到更好的工作。”一会她又略显忧虑地说道:“不过有时也觉得自己好像不太喜欢学习,也许并不适合
HTML的正式名称是________。
Recentstudieshaveidentifiedfourmajorglobalenvironmentalrisks:【B1】______rain,ozonedepletion,【B2】______andthegreenho
最新回复
(
0
)