首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上连续,在(0,1)内可导,证明:存在ξ,η∈(0,1),使得4/πf’(x)=(1+η2)f’(η).
设f(x)在[0,1]上连续,在(0,1)内可导,证明:存在ξ,η∈(0,1),使得4/πf’(x)=(1+η2)f’(η).
admin
2022-10-12
51
问题
设f(x)在[0,1]上连续,在(0,1)内可导,证明:存在ξ,η∈(0,1),使得4/πf’(x)=(1+η
2
)f’(η).
选项
答案
令g(x)=arctanx,g’(x)=1/(1+x
2
)≠0(x≠0),由柯西中值定理,存在η∈(0,1)。使得[f(1)-f(0)]/[g(1)-g(0)]=f’(η)/g’(η),即4/π·[f(1)-f(0)]=(1+η
2
)f’(η),再由拉格朗日中值定理,存在ξ∈(0,1),使得f(1)-f(0)=f’(ξ),故4/πf’(ξ)=(1+η
2
)f’(η).
解析
转载请注明原文地址:https://kaotiyun.com/show/DoC4777K
0
考研数学三
相关试题推荐
设A,B都是三阶矩阵,A相似于B,且|E-A|=|E-2A|=|E-3A|=0,则|B-1+2E|=________。
设随机变量X,Y独立同分布且X的分布函数F(x),则Z=max{X,Y}的分布函数为().
若函数f(x)在点x0处的左导数f﹣’(x0)和右导数f﹢’(x0)都存在,则().
设y=f(x)二阶可导,f’(x)≠0,它的函数是x=φ(y),又f(0)=1,f’(0)=,f’’(0)=-1,则=_________________________。
齐次方程组的系数矩阵为A,若存在三阶矩阵B≠0,使得AB=0,则().
设向量组α1,α2,α3线性相关,向量组α2,α3,α4线性无关,问:(1)α1能否由α2,α3线性表出?证明你的结论.(2)α4能否由α1,α2,α3线性表出?证明你的结论.
的渐近线条数为().
设A,B为三阶矩阵,且AB=A-B,若λ1,λ2,λ3为A的三个不同的特征值,证明:存在可逆矩阵P,使得P-1AP,P-1BP同时为对角矩阵.
设f(x)在[1,2]上连续,在(1,2)内可导,且f(x)≠0(1<x<2),又存在,证明:(1)存在ξ∈(1,2),使得.(2)存在7E(1,2),使得∫18f(t)dt=ξ(ξ一1)f’(η)ln2.
设A为m×n矩阵,证明:非齐次线性方程组Ax=b有解的充分必要条件是对齐次线性方程幺且ATy=0的任何解向量u均有uTb=u1b1+u2b2+…+umbm=0.
随机试题
资产评估结论是为资产业务提供专业化估价意见,这个意见本身()
女,24岁,上腹部疼痛并向下腹部放射4天,伴恶心、呕吐,卧位不愿翻身,立位不愿直腰。检查:急性面容,腹稍胀,两下腹部均有压痛及轻度反跳痛,以右侧为著,右下腹可扪及5cm×3cm包块,边界不清,固定;白细胞计数12×109/L。经螺旋CT扫描确定该患者诊
某热电公司的新建项目工程,占地面积6.5万平方米,建筑面积3.7万平方米,采用中温中压锅炉,单机容量30万千瓦,主要设备包括:循环流化床锅炉、抽凝式汽轮发电机组、钠离子交换器、湿式脱硫除尘器等。主要能源来自于燃煤,同时使用大量的水进行冷却。配套工程有除灰渣
某载重汽车原值为29万元,预计行使里程为30万公里,预计残值率为5%,某月实际行使里程为1000公里,则按工作量法,本月应计提的折旧额为( )元。
拖拉架梁方法按照牵引方式可分为()。
我国三大妈祖庙分别在()。
既通过集体的管理去影响个人,又通过对个人的直接管理影响集体。这样的班级管理模式称为()
长城绵延万里,有众多关卡,下列不属于长城关卡并且与其所处地区对应错误的是:
2012年7月27日,第三十届夏季奥林匹克运动会在英国伦敦开幕。其吉祥物标志迅速进行了商标注册,作为有偿使用的吉祥物标志()。
咬人草小记①在新疆,有一次到山里访问哈萨克牧人,很偶然地认识了一种奇怪的植物。②如果不是新疆友人介绍,我决不会注意它们的。那是在爬坡的路上,前面的人突然大声叫起来:③“小心!咬人草!”④咬人草?草会咬人,我有点不相信。这是生
最新回复
(
0
)