首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上连续,在(0,1)内可导,证明:存在ξ,η∈(0,1),使得4/πf’(x)=(1+η2)f’(η).
设f(x)在[0,1]上连续,在(0,1)内可导,证明:存在ξ,η∈(0,1),使得4/πf’(x)=(1+η2)f’(η).
admin
2022-10-12
53
问题
设f(x)在[0,1]上连续,在(0,1)内可导,证明:存在ξ,η∈(0,1),使得4/πf’(x)=(1+η
2
)f’(η).
选项
答案
令g(x)=arctanx,g’(x)=1/(1+x
2
)≠0(x≠0),由柯西中值定理,存在η∈(0,1)。使得[f(1)-f(0)]/[g(1)-g(0)]=f’(η)/g’(η),即4/π·[f(1)-f(0)]=(1+η
2
)f’(η),再由拉格朗日中值定理,存在ξ∈(0,1),使得f(1)-f(0)=f’(ξ),故4/πf’(ξ)=(1+η
2
)f’(η).
解析
转载请注明原文地址:https://kaotiyun.com/show/DoC4777K
0
考研数学三
相关试题推荐
[*]
星形线(0>0)绕Ox轴旋转所得旋转曲面的面积为__________.
[*]
设随机变量X1的分布函数为F1(χ),概率密度函数为f1(χ),且E(X1)=1,随机变量X的分布函数为F(χ)=0.4F1(χ)+0.6F1(2χ+1),则E(X)=_______.
设A为m阶实对称矩阵,B为m×n实矩阵,BT为B的转置矩阵,试证:BTAB为正定矩阵的充分必要条件是B的秩r(B)=n.
设f(x)在[1,2]上连续,在(1,2)内可导,且f(x)≠0(1<x<2),又存在,证明:(1)存在ξ∈(1,2),使得.(2)存在7E(1,2),使得∫18f(t)dt=ξ(ξ一1)f’(η)ln2.
证明线性方程组(Ⅰ)有解的充分必要条件是方程组(Ⅲ)是同解方程组.
设曲线y=xn在点(1,1)处的切线交x轴于点(ξn,0),求.
设(1,一1)是曲线y=x3+ax2+bx+c的拐点,且y在x=0处取极大值.求a,b,c.
随机试题
国际经济组织基本的法律能力包括_______、_______和_______。
常用除热原的方法
治疗咳血肝火犯肺证,应首选
评标委员会成员拒绝在评标报告上签字又不书面说明其不同意见和理由的,()。
应用因果分析图法时应注意的事项包括()。
以下不属于项目投资决策主要方法的是()。
判断旅游者要求是否合理的标准有()。
2016年某市一次有关市民邻里关系的调查显示:在受访的951位市民中,“没有邻居”的有6位。“有邻居”的受访市民中,对邻居表示“了解”的占55.8%(“了解”分“很了解”和“部分了解”,占比分别为26.9%和28.9%),其余的表示“不了解”;对邻里关
在报表中要计算“实发工资”字段的平均值,应将控件的“控件来源”属性设置为()。
A、She’sworriedthatthemanwillmissnextweek’sdeadline.B、Shedoesn’tknowwhenthedeadlinefortuitionpaymentis.C、The
最新回复
(
0
)