首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设随机变量X的概率密度为f(x),已知方差DX=1,而随机变量Y的概率密度为f(一y),且X与Y的相关系数为,记Z=X+Y,求: (1)EZ,DZ; (2)用切比雪夫不等式估计P{|Z|≥2}.
设随机变量X的概率密度为f(x),已知方差DX=1,而随机变量Y的概率密度为f(一y),且X与Y的相关系数为,记Z=X+Y,求: (1)EZ,DZ; (2)用切比雪夫不等式估计P{|Z|≥2}.
admin
2018-09-20
67
问题
设随机变量X的概率密度为f(x),已知方差DX=1,而随机变量Y的概率密度为f(一y),且X与Y的相关系数为
,记Z=X+Y,求:
(1)EZ,DZ;
(2)用切比雪夫不等式估计P{|Z|≥2}.
选项
答案
(1)EZ=E(X+Y)=EX+EY=∫
-∞
+∞
xf(x)dx+∫
-∞
+∞
yf(一y)dy [*]∫
-∞
+∞
xf(x)dx+∫
+∞
-∞
(一u)f(u)(一du) =∫
-∞
+∞
xf(x)dx—∫
-∞
+∞
uf(u)du=0, DZ=D(X+Y)=DX+DY+2CoV(X,Y)=DX+DY+[*]. 又 DY=E(Y
2
)一(EY)
2
, 其中EY=一EX,E(Y
2
)=∫
-∞
+∞
y
2
f(-y)dy=∫
+∞
-∞
(一u)
2
f(u)(一du)=∫
-∞
+∞
u
2
f(u)du=E(X
2
), 则DY=E(X
2
)一(一EX)
2
=E(X
2
)一(EX)
2
=DX=1, [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/DtW4777K
0
考研数学三
相关试题推荐
设随机变量X和Y独立,并且都服从正态分布N(μ,σ2),求随机变量Z=min(X,Y)的数学期望.
假设随机变量X的密度函数f(x)=ce-λ|x|(λ>0,-∞<x<+∞),Y=|X|.(Ⅰ)求常数c及EX,DX;(Ⅱ)问X与Y是否相关?为什么?(Ⅲ)问X与Y是否独立?为什么?
设二维随机变量(X,Y)的联合概率密度为记X=X2+Y2.求:(Ⅰ)Z的密度函数;(Ⅱ)EZ,DZ;(Ⅲ)P{Z≤1}.
已知f(x)=在(-∞,+∞)存在原函数,求常数A以及f(x)的原函数.
若函数f(x)连续并满足f(x)=x+,则f(x)=_____.
参数a取何值时,线性方程组有无数个解?求其通解.
设随机变量X与Y相互独立,下表列出二维随机变量(X,Y)的联合分布律及关于X和Y的边缘分布律的部分数值,试将其余的数值填入表中空白处.
设总体X~F(x,θ)=样本值为1,1,3,2,1,2,3,3,求θ的矩估计和最大似然估计.
设总体X~N(0,8),Y~N(0,22),且X1及(Y1,Y2)分别为来自上述两个总体的样本,则
设(1)f(x,y)在点(0,0)处是否连续?(2)f(x,y)在点(0,0)处是否可微?
随机试题
以下属于排除地表水的设施是()。
本病诊断为本病的治法
叶横切面观察上下表皮上的特征及附属物有
安装电缆时,1kV的电力电缆与控制电缆间距不应小于()mm。
中原城市群是以郑州为中心,以洛阳为副中心,以开封、新乡、焦作、许昌、平顶山、漯河、济源等地区性城市为节点构成的紧密联系圈。中原城市群内各城市联系日益紧密,基本形成了以郑州为中心的通达的交通网络。据此并结合下图回答问题。读下面两图,黄河小浪底水库蓄清排
在地球之外,究竟有没有外星人?两位美国学者花了5年的时间,在北半球天空到了37个可能是来自地球外文明的讯号。他们利用直径为26米的射电望远镜,_________由浩瀚宇宙深处发出的未知讯号。填入划横线部分最恰当的一项是:
人类社会的发展历史证明,中间阶层是社会的稳定器,他们有稳定的工作和收入,经济上乐于消费,政治上渴望稳定。中国目前的问题是中间阶层的规模还不够大,也不稳定,而且随着经济形势的变化,也开始面临失业的威胁。如果政府袖手旁观,置之不理,将不利于社会的稳定。
Science,beingahumanactivity,isnotimmunetofashion.【F1】Forexample,oneofthefirstmathematicianstostudythesubject
电子数字计算机最早的应用领域是_______。
ArchaeologistAndrejGaspariishauntedbypiecesofthepast.Hishometownriver,theLjubljanica,hasyieldedthousandsofthe
最新回复
(
0
)