首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]可导,且f’+(a)与f’-(b)反号,证明:存在ξ∈(n,b)使f’(ξ)=0.
设f(x)在[a,b]可导,且f’+(a)与f’-(b)反号,证明:存在ξ∈(n,b)使f’(ξ)=0.
admin
2020-03-10
54
问题
设f(x)在[a,b]可导,且f’
+
(a)与f’
-
(b)反号,证明:存在ξ∈(n,b)使f’(ξ)=0.
选项
答案
【证法一】 由极限的不等式性质和题设知,存在δ>0使得a+δ<b—δ,且 [*] 于是 f(a+δ)>f(a),f(b一δ)>f(b). 这表明f(x)在[a,b]上的最大值必在(a,b)内某点取到,即存在ξ∈(a,b)使得[*]由费马定理知f’(ξ)=0. 【证法二】 f(x)在[a,b]必有最大值.若最大值在x=a(或x=b)取到,由最值点处的导数性质知,f’
+
(a)≤0(f’
-
(b)≥0),这与已知矛盾.因此f(x)在[a,b]的最大值不能在x=a及x=b取到,即[*]ξ∈(a,b)使得[*]是f(x)的极值点,f’(ξ)=0.
解析
因f(x)在[a,b]上可导,因而必连续,故存在最大值和最小值.如能证明最大值或最小值在(a,b)内取得,那么这些点的导数值必为零,从而证明了命题.注意,由于题设条件中未假设f’(x)连续,所以不能用连续函数的介值定理来证明.证明时不妨设f’
+
(a)>0且f’
-
(b)<0.
转载请注明原文地址:https://kaotiyun.com/show/DuD4777K
0
考研数学三
相关试题推荐
设向量组α3=(1,0,1)T,α2=(0,1,1)T,α3=(1,3,5)T不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,0)T线性表示。求a的值;
设f(x,y)连续,且f(x,y)=xy+f(u,v)dudv,其中D是由y=0,y=x2,x=1所围区域,则f(x,y)等于()
设有平面闭区域,D={(x,y)|一a≤x≤a,x≤y≤a},D1={(x,y)|0≤x≤a,x≤y≤a},则(xy+cosxsiny)dxdy=()
设线性方程组(1)Ax=0的一个基础解系为α1=(1,1,1,0,2)T,α2=(1,1,0,1,1)T,α3=(1,0,1,1,2)T。线性方程组(2)Bx=0的一个基础解系为β1=(1,1,一1,一1,1)T,β2=(1,一1,1,一1,2)T,β3
设二维离散型随机变量(X,Y)的联合概率分布如下表所示试求:X与Y的边缘分布律,并判断X与Y是否相互独立;
求二重积分max(xy,1)dxdy,其中D={(x,y)|0≤x≤2,0≤y≤2}。
设A,B为同阶方阵。当A,B均为实对称矩阵时,证明(I)的逆命题成立。
设f(x)=|sint|dt,求f(x)的值域。
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y12+y22。
将函数在区间(-1,1)上展开成x的幂级数。
随机试题
“三言”包括()
下列哪项无腹膜覆盖
根据《证券法》的规定,下列有关上市要约收购的表述不正确的是()。
北京市兴兴房地产开发公司,2015年发生业务如下:(1)1月通过竞拍取得一宗土地使用权,支付价款8200万元,用于开发写普通标准住宅楼。(2)开发期间发生开发成本5000万元。(3)发生管理费用1135万元、销售费用1756万元、财务费用500万元
现代中医借助西医的物理检验手段,提高传统的“望→闻→问→切→处”的诊断准确性。这样的优化属于()。
EatingMeat—LessorMore?EverysecondintheUnitedStatesalone,morethan250animalsareslaughteredforfood,addingup
Broadlyspeaking,theEnglishmanisaquiet,shy,reservedpersonwhoisfully【21】______onlyamongpeopleheknowswell.
Inthissectionofthetest,youwillbeaskedtochoosebetweentwoopinions.Youwillneedtoanswerthequestionbysupportin
UniversitiesintheUSThereare【T1】______intheUnitedStates.Nearlyhalfofthe【T2】______inAmericagoontocollege.Mos
TheworkforwhichThomasMalthusisstillmostwidelyknownishisEssayonthePrincipleofPopulation,whichfirstappearedi
最新回复
(
0
)