首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设实二次型f(x1,x2,x3)=xATx的秩为2,且α1=(1,0,0)T是(A一2E)x=0的解,α2=(0,一1,1)T是(A一6E)x=0的解. 求方程组f(x1,x2,x3)=0的解.
设实二次型f(x1,x2,x3)=xATx的秩为2,且α1=(1,0,0)T是(A一2E)x=0的解,α2=(0,一1,1)T是(A一6E)x=0的解. 求方程组f(x1,x2,x3)=0的解.
admin
2016-01-11
75
问题
设实二次型f(x
1
,x
2
,x
3
)=xA
T
x的秩为2,且α
1
=(1,0,0)
T
是(A一2E)x=0的解,α
2
=(0,一1,1)
T
是(A一6E)x=0的解.
求方程组f(x
1
,x
2
,x
3
)=0的解.
选项
答案
由于f(x
1
,x
2
,x
3
)=2x
1
2
+3(x
2
一x
3
)
2
=0,得[*],k为任意常数.
解析
本题考查由正交变换化二次型为标准形的逆问题,由二次型的秩和方程组的解确定二次型的矩阵A的特征值与特征向量.从而求解.
转载请注明原文地址:https://kaotiyun.com/show/Dv34777K
0
考研数学二
相关试题推荐
A=求a,b及可逆矩阵P,使得P-1AP=B.
设A为三阶方阵,A的每行元素之和为5,AX=0的通解为k1求Aβ.
设A,B为n阶矩阵,且r(A)+r(B)<n.证明:A,B有公共的特征向量.
(1)若A可逆且A~B,证明:A*~B*;(2)若A~B,证明:存在可逆矩阵P,使得AP~BP.
设A为三阶矩阵,ξ1,ξ2,ξ3是三维线性无关的列向量,且Aξ1=-ξ1+2ξ2+2ξ3,Aξ2=2ξ1-ξ2-2ξ3,Aξ3=2ξ1-2ξ1-2ξ2-ξ3,(1)求矩阵A的全部特征值;(2)求|A*+2E|.
设A为三阶实对称矩阵,α1=(a,-a,1)T是方程组AX=0的解,α2=(a,1,1-a)T是方程组(A+E)X=0的解,则a=________.
设函数f(x)在区间[0,4]上连续,且=0,求证:存在ξε(0,4)使得f(ξ)+f(4-ξ)=0。
设A是3阶实对称矩阵,二次型f(x1,x2,x3)=xTAx经正交变换x=Qy后的标准形为y12+y22-y32,则二次型g(x1,x2,x3)=xTAA*x经可逆线性变换x=Py后的规范形为()
随机试题
曹魏建国后,执掌诏令发布权的是()
在微型机的使用过程中,下列说法正确的是()。
A、Doctorsandnurses.B、Findingahospitalteacher.C、Theschoolteacher.D、Newmedicalinstruments.B从“Mostchildreninterviewe
A早产儿B新生儿C3~4个月小儿D5~6个月小儿E8~10个月小儿发生生理性流涎时小儿月龄为
用于小儿退热,预防发热所致惊厥的药品是在非处方药中仅限定于外用和塞肛,不能口服的药品是
水利水电工程施工进度计划常用的表达方法有()。
某企业1月29日银行存款账户余额为2万元。当日,一材料供应商上门到该企业催要金额为18万元的材料货款。该企业为了尽快将供应商“打发走”,就向材料供应商开出了一张18万元的转账支票。要求:根据法律的规定,回答下列问题:(1)该企业开出的这
下列属于商业银行内部控制的内部环境的有()。
我国城市基础设施建设资金的主要来源是()。
Businesshasslowed,layoffsmount,butexecutivepaycontinuestoroar—atleastsofar.BusinessWeek’sannualsurveyfindstha
最新回复
(
0
)