首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设非齐次线性方程组Ax=b有通解k1ξ1+k2ξ2+η=k1(1,2,0,—2)T+k2(4,一1,一1,一1)T+(0,0,0,1)T,其中k1,k2是任意常数,则下列向量中不是Ax=b的解向量的是 ( )
设非齐次线性方程组Ax=b有通解k1ξ1+k2ξ2+η=k1(1,2,0,—2)T+k2(4,一1,一1,一1)T+(0,0,0,1)T,其中k1,k2是任意常数,则下列向量中不是Ax=b的解向量的是 ( )
admin
2018-03-30
62
问题
设非齐次线性方程组Ax=b有通解k
1
ξ
1
+k
2
ξ
2
+η=k
1
(1,2,0,—2)
T
+k
2
(4,一1,一1,一1)
T
+(0,0,0,1)
T
,其中k
1
,k
2
是任意常数,则下列向量中不是Ax=b的解向量的是 ( )
选项
A、α
1
=(1,2,0,一1)
T
.
B、α
2
=(6,1,一2,一1)
T
.
C、α
3
=(一5,8,2,一3)
T
.
D、α
4
=(5,1,一1,一2)
T
.
答案
B
解析
若α是Ax=b的解,则α可表示成k
1
ξ
1
+k
2
ξ
2
,即α一η=k
1
ξ
1
+k
2
ξ
2
.若α一η可由ξ
1
,ξ
2
线性表示,则是Ax=0的解;若不能由ξ
1
,ξ
2
线性表示,则不是Ax=0的解.将ξ
1
,ξ
2
,α
1
一η,α
2
一η,α
3
一η,α
4
一η合并成矩阵,并一起作初等行变换.
故知,α
2
一η不能由ξ
1
,ξ
2
线性表示,不是Ax=0的解向量(α
1
一η,α
3
一η,α
4
一η是解向量),故应选B.
转载请注明原文地址:https://kaotiyun.com/show/DwX4777K
0
考研数学三
相关试题推荐
设矩阵A的伴随矩阵矩阵B满足关系式.ABA-1=BA-1+3E,求矩阵B.
设求An(n=2,3,…);
将函数y=ln(1一x一2x2)展成x的幂级数,并指出其收敛区间.
已知函数试计算下列各题:(1)(2)(3)(4)
已知αi=(αi1,αi2…,αin)T(i=1,2,…,r,r<n)是n维实向量,且α1,α2…,αr线性无关.已知β=(b1,b2,…,bn)T是线性方程组的非零解向量.试判断向量组α1,α2,…,αr,β的线性柑关性.
设某厂生产甲、乙两种产品,产量分别为x,y(千只),其利润函数为π=一x2一4y2+8x+24y一15,如果现有原料15000公斤(不要求用完),生产两种产品每千只都要消耗原料2000公斤,求使利润最大的产量x,y和最大利润;
设函数y=y(x)满足条件.
设随机变量X,Y相互独立均服从正态分布N(0,σ2),求的概率密度fz(z);
当掷一枚均匀硬币时,问至少应掷多少次才能保证正面出现的频率在0.4至0.6之间的概率不小于0.97试用切比雪夫不等式和中心极限定理来分别求解.(Ф(1.645)=0.95)
某人衣袋中有两枚硬币,一枚是均匀的,另一枚两面部是正面.(Ⅰ)如果他随机取一枚抛出,结果出现正面,则该枚硬币是均匀的概率为多少;(Ⅱ)如果他将这枚硬币又抛一次,又出现正面,则该枚硬币是均匀的概率为多少.
随机试题
Word2003中,“制表位”命令位于________。
患者突然出现腹部剧痛及腹膜刺激征,首先考虑()
如果两人群某病的粗发病率相同,那么
根据我国《宪法》和《选举法》的规定,下列哪些选项是正确的?
根据《生产安全事故报告和调查处理条例》(国务院令第493号),从伤亡事故性质方面认定,生产安全事故可分为()。
在每日开市前,基金管理人需向()提供ETF的申购清单和赎回清单。Ⅰ.证券交易所Ⅱ.证券登记结算机构Ⅲ.基金托管人Ⅳ.基金管理公司
虚假陈述行为中,如果被告举证证明原告具有一定情形的,人民法院应当认定虚假陈述与损害结果之间不存在因果关系,下列关于该情形的表述中,不正确的是()。
林老师发现乐乐最近变得很爱打人.还经常不来幼儿园.林老师想要和家长沟通.详细了解乐乐发生变化的原因。下列最适合的做法是()
任何稍有头脑的管理者都知道创新是成功的关键要素。但问题是,这需要大脑的两个半球都参与工作:富于想象、擅长整体性思维的右脑,加上理性、分析型的左脑。可是像达.芬奇这样同时精于艺术想象和科学分析的人,是极为罕见的。__________。填入横线部分最恰当的一项
A、Toaskforsuggestionsonfamilyholiday.B、Tocomplainabouttheholidayplan.C、Toinquireaboutcampinginformation.D、Tod
最新回复
(
0
)