首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设随机变量(X,Y)的概率密度函数为f(x,y)﹦其分布函数为F(x,y)。 (I)求F(x,y); (Ⅱ)分别求(X,Y)关于X,Y的边缘概率密度,并判断X与Y是否相互独立。
设随机变量(X,Y)的概率密度函数为f(x,y)﹦其分布函数为F(x,y)。 (I)求F(x,y); (Ⅱ)分别求(X,Y)关于X,Y的边缘概率密度,并判断X与Y是否相互独立。
admin
2019-01-22
47
问题
设随机变量(X,Y)的概率密度函数为f(x,y)﹦
其分布函数为F(x,y)。
(I)求F(x,y);
(Ⅱ)分别求(X,Y)关于X,Y的边缘概率密度,并判断X与Y是否相互独立。
选项
答案
(I)根据分布函数的定义 [*] 因为f
X
(x)·f(y)≠f(x,y),所以X与Y不相互独立。 本题考查连续型随机变量的分布函数和边缘概率密度的计算。设二维连续型随机变量(X,Y)的分布函数为F(x,y),如果概率密度函数f(x,y)非负可积,则有F(x,y)﹦∫
-∞
y
∫
-∞
x
f(u,v)dudv。
解析
转载请注明原文地址:https://kaotiyun.com/show/DyM4777K
0
考研数学一
相关试题推荐
设z=z(x,y)有连续的二阶偏导数并满足(I)作变量替换u=3x+y,v=x+y,以u,v作为新的自变量,变换上述方程;(Ⅱ)求满足上述方程的z(x,y).
设α1,α2,…,αr和β1,β2,…,βs是两个线性无关的n维向量.证明:向量组{α1,α2,…,αr;β1,β2,…,βs}线性相关存在非零向量r,它既可用α1,α2,…,αr线性表示,又可用β1,β2,…,βs线性表示.
AB=0,A,B是两个非零矩阵,则
已知ξ=(0,1,0)T是方程组的解,求通解.
设随机变量X的概率密度为f(x),已知D(X)=1,而随机变量Y的概率密度为f(一y),且ρXY=记Z=X+Y,求E(Z),D(Z).
设(X,Y)的联合分布函数为其中参数λ>0,试求X与Y的边缘分布函数.
设平面Ⅱ经过平面Ⅱ1:3x一4y+6=0与Ⅱ2:2y+z一11=0的交线,且和Ⅱ1垂直,求Ⅱ的方程.
计算下列三重积分或将三重积分化成累次积分I=x3y2zdV,其中Ω是由x=1,x=2,y=0,y=x2,z=0及z=所围成的区域.
计算(1)∑为的上侧.(2)∑为上半椭球面(z≥0)的上侧.
以y=C1ex+ex(C2cosx+C3sinx)为特解的三阶常系数齐次线性微分方程为________.
随机试题
某男,左足怕冷、疼痛、间歇性跛行年余。月余来足痛转为持续性静止痛,夜间痛剧,不能人睡,足背动脉搏动消失。应诊断为()
二维随机变量(X,Y),X—N(0,1),Y—N(0,4),U=X+Y,V=X+2Y,则U、Y不相关的充要条件是()。
在空气中用波长为λ单色光进行双缝干涉实验,观测到相邻明条纹间的间距为1.33mm,当把实验装置放在水中(水的折射率为1.33)时,则相邻明条纹的间距变为()。
李某与王某共同出资在某市开设香客来餐饮有限公司,于2010年3月28日办理了税务登记。由于效益不好,餐饮公司于2011年11月31日停业。税务部门对该餐饮公司纳税情况进行检查时,发现其在经营期间应缴纳营业税、城建税、教育费附加等共计70834元,但餐饮公司
1.给定材料政府提供的公共产品并不全是可以计量、具有具体生产流程的有形物质实体,其有形“产品”载体可以是以“软件”形式出现的,如文件、证件等,更多的是无形“产品”的表现形式,如公务员的服务态度和工作效率、政府的形象和保障力度等,产品质量的实质是满
公文最主要的表达方式是()。
为节省测验成本,将某个信度为0.98的测验由500题减少为300题,则其信度变为()。
WhenfamiliesgatherforChristmasdinner,somewillsticktoformaltraditionsdatingbacktoGrandma’sgeneration.Theirtable
在我国现阶段,社会主义道德建设应该以()
Somepeopleseemtohaveaknack(诀窍)forlearninglanguages.Theycanpickupnewvocabulary,masterrulesofgrammar,andlearn
最新回复
(
0
)