设f(x)在[a,b]上连续,在(a,b)内存在二阶导数,且f(a)=f(b)=0,∫abf(x)dx=0.证明: 存在ξi∈(a,b)(i=1,2),且ξ1≠ξ2,使得f’(ξi)+f(ξi)=0(i=1,2);

admin2018-05-21  28

问题 设f(x)在[a,b]上连续,在(a,b)内存在二阶导数,且f(a)=f(b)=0,∫abf(x)dx=0.证明:
存在ξi∈(a,b)(i=1,2),且ξ1≠ξ2,使得f’(ξi)+f(ξi)=0(i=1,2);

选项

答案令h(x)=exf(x),因为h(a)=h(c)=h(b)=0,所以由罗尔定理,存在ξ1∈(a,c),ξ2∈(c,b),使得h’(ξ1)=h’(ξ2)=0, 而h’(x)=ex[f’(x)+f(x)]且ex≠0,所以f’(ξi)+f(ξi)=0(i=1,2).

解析
转载请注明原文地址:https://kaotiyun.com/show/Dzg4777K
0

最新回复(0)