首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵A=,矩阵B=(μE﹢A)n,其中μ是实数,E是单位矩阵.求对角矩阵A,使B~A,并讨论B的正定性.
设矩阵A=,矩阵B=(μE﹢A)n,其中μ是实数,E是单位矩阵.求对角矩阵A,使B~A,并讨论B的正定性.
admin
2018-12-21
29
问题
设矩阵A=
,矩阵B=(μE﹢A)
n
,其中μ是实数,E是单位矩阵.求对角矩阵A,使B~A,并讨论B的正定性.
选项
答案
由|λE-A|=[*]=(λ﹢2)[(λ-1)
2
-1]=(λ﹢2)λ(λ-2),知A有特征值λ
1
=-2,λ
2
=0,λ
3
=-2. 由于A是实对称矩阵(或A有三个不同的特征值),故A~[*]=A
1
,所以存在正交矩阵P,使得P
-1
AP=A
1
,故A=PA
1
P
-1
,代入矩阵B,有B=(μE﹢A)
n
=(μPP
-1
﹢PA
1
P
-1
)
n
=[P(μE﹢A
1
)P
-1
]
n
=P(μE﹢A
1
)
n
P
-1
[*] 当n=2k(k=0,1,2,…)且μ≠,μ≠2,μ≠-2时,A正定,则B正定; 当n=2k﹢1(k=0,1,2,…)且μ>2时,A正定,则B正定.
解析
转载请注明原文地址:https://kaotiyun.com/show/E8j4777K
0
考研数学二
相关试题推荐
(2000年)已知向量组具有相同的秩,且β3可由α1,α2,α3线性表示,求a、b的值.
(2004年)把χ→0+时的无穷小量α=∫0χcost2dt,β=,γ=sint3dt排列起来,使排在后面的是前面一个的高阶无穷小,则正确的排列次序是【】
(2002年)矩阵A=的非零特征值是_______.
(2002年)已知曲线的极坐标方程是r=1-cosθ,求该曲线上对应于0=处的切线与法线的直角坐标方程.
(1999年)“对任意给定ε∈(0,1),总存在正整数N,当,n>N时,恒有|χn-a|≤2ε”是数列{χn}收敛于a的【】
求内接于椭球面=1的长方体的最大体积.
设向量组α1=[α11,α21,…,αn1]T,α2=[α12,α22,…,αn2]T,…,αs=[α1s,α2s,…,αns]T,证明:向量组α1,α2,…,αs线性相关(线性无关)的充要条件是齐次线性方程组有非零解(有唯一零解).
如图8.11所示.[*]原式=[*]
已知=2x+y+1,=x+2y+3,μ(0,0)=1,求μ(x,y)及μ(x,y)的极值,并问此极值是极大值还是极小值?说明理由。
下列函数在给定区间上是否满足拉格朗日定理的所有条件?如满足,请求出定理中的数值ε(1)f(x)=x3[0,a]a>0(2)f(x)=lnx[1,2](3)f(x)=x3-5x2+x-2[-1,0]
随机试题
某男,35岁。主诉:近来因应酬太多,备感疲劳。昨日起怕冷,发热,头痛,恶心,呕吐,腹泻。望诊:舌质淡,苔白腻,脉象濡滑。最佳选药是
公路隧道围岩岩体弹性纵波速度为3200m/s,相应岩石的弹性纵波速度为5000m/s,岩石的饱和单轴抗压强度Re=45MPa。试问:该岩体基本质量指标BQ最接近下列()项。
下列关于劳动合同试用期的说法中,正确的有()。
在施工质量控制点的控制中,对冷拉钢筋应注意先焊接之后再进行冷拉,这是从()方面加强重点控制。
假定在某一产量水平上,某厂商的平均成本达到了最小值,这意味着()。
负性自动想法与功能失调性态度的区别在于()。
“虽有嘉肴,弗食不知其旨也;虽有至道,弗学不知其善也。是故学然后知不足,教然后知困。知不足,然后能自反也;知困,然后能自强也。”这句话所体现的教育教学原则是()
已知f(x)二阶可导,且f(x)>0,f(x)f’’(x)-[f’(x)]2≥0(x∈R).证明:f(x1)f(x2)≥
The21stcenturyisacenturyofbiotechrevolution.【F1】Yetbeforehumanbeingsareabletofullyenjoythefruitsofthebiotec
【21】【22】
最新回复
(
0
)