首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵A=,矩阵B=(μE﹢A)n,其中μ是实数,E是单位矩阵.求对角矩阵A,使B~A,并讨论B的正定性.
设矩阵A=,矩阵B=(μE﹢A)n,其中μ是实数,E是单位矩阵.求对角矩阵A,使B~A,并讨论B的正定性.
admin
2018-12-21
58
问题
设矩阵A=
,矩阵B=(μE﹢A)
n
,其中μ是实数,E是单位矩阵.求对角矩阵A,使B~A,并讨论B的正定性.
选项
答案
由|λE-A|=[*]=(λ﹢2)[(λ-1)
2
-1]=(λ﹢2)λ(λ-2),知A有特征值λ
1
=-2,λ
2
=0,λ
3
=-2. 由于A是实对称矩阵(或A有三个不同的特征值),故A~[*]=A
1
,所以存在正交矩阵P,使得P
-1
AP=A
1
,故A=PA
1
P
-1
,代入矩阵B,有B=(μE﹢A)
n
=(μPP
-1
﹢PA
1
P
-1
)
n
=[P(μE﹢A
1
)P
-1
]
n
=P(μE﹢A
1
)
n
P
-1
[*] 当n=2k(k=0,1,2,…)且μ≠,μ≠2,μ≠-2时,A正定,则B正定; 当n=2k﹢1(k=0,1,2,…)且μ>2时,A正定,则B正定.
解析
转载请注明原文地址:https://kaotiyun.com/show/E8j4777K
0
考研数学二
相关试题推荐
(2012年)设(Ⅰ)计算行列式|A|;(Ⅱ)当实数a为何值时,方程组Aχ=β有无穷多解,并求其通解.
(2003年)设向量组Ⅰ:α1,α2,…,αr可由向量组Ⅱ:β1,β2,…,βr线性表示,则【】
(1999年)设函数y(χ)(χ≥0)二阶可导,且y′(χ)>0,y(0)=1.过曲线y=y(χ)上任意一点P(χ,y)作该曲线的切线及χ轴的垂线,上述两直线与χ轴所围成的三角形的面积记为S1,区间[0,χ]上以y=f(χ)为曲边的曲边梯形面积记为S2,并
(2003年)若矩阵A=相似于对角矩阵A,试确定常数a的值;并求可逆矩阵P,使P-1AP=A.
(2012年)已知函数f(χ)满足方程f〞(χ)+f′(χ)-2f(χ)=0及f〞(χ)+f(χ)=2eχ.(Ⅰ)求f(χ)的表达式;(Ⅱ)求曲线y=f(χ2)∫0χf(-t2)dt的拐点.
(1987年)设I=tf(tχ)dχ,其中f(χ)连续,S>0,t>0,则I的值【】
(1993年)设f′(χ)在[0,a]上连续,且f(0)=0,证明
给出如下5个命题:(1)若不恒为常数的函数f(x)在(一∞,+∞)内有定义,且x0≠0是f(x)的极大值点,则一x0必是一f(一x)的极大值点;(2)设函数f(x)在[a,+∞)上连续,f"(x)在(a,+∞)内存在且大于零,则F(x)
已知ξ=[1,1,一1]T是矩阵A=的一个特征向量.(1)确定参数a,b及ξ对应的特征值λ;(2)A是否相似于对角阵,说明理由.
[*]所以原式=(e一1).
随机试题
上半口义齿基托后部的封闭区是A.上颌结节B.上颌前弓区C.上颌硬区D.上颌后堤区E.腭小凹
在奇经八脉中总任诸阴经,称为“阴脉之海”的是()
管理方法是实现管理目标的途径和手段,其主要方法有()
消费函数(APC)和储蓄函数(APS)的关系是()。
根据所给材料撰写约稿信。(出版社的具体地址、邮政编码、电话号码、电子信箱地址等一律用×××代替)2018年1月26日,国家新闻出版广电总局(现改为“国家新闻出版署”)印发了《关于开展2018年全民阅读工作的通知》(以下简称《通知》)。《通知》指出
专门机关与广大群众的结合,是在双方目标一致基础上的结合,主导方面是()。
“因同一行为应当承担侵权责任和行政责任、刑事责任,侵权人的财产不足以支付的,先承担侵权责任。”《中华人民共和国侵权责任法》作出这一规定的理由不可能是()。
bubbleeconomy
小蒋是一位中学教师,在教务处负责初一年级学生的成绩管理。由于学校地处偏远地区,缺乏必要的教学设施,只有一台配置不太高的PC可以使用。他在这台电脑中安装了MicrosoftOffice,决定通过Excel来管理学生成绩,以弥补学校缺少数据库管理系统的不足。
Californiaseemstobethehomeofthehomelesssincemanyareoftenobservedtrampingalongrailroadtracksandthroughthedow
最新回复
(
0
)