首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α为n维单位列向量,E为n阶单位矩阵,则( )
设α为n维单位列向量,E为n阶单位矩阵,则( )
admin
2018-07-26
81
问题
设α为n维单位列向量,E为n阶单位矩阵,则( )
选项
A、E-αα
T
不可逆.
B、E+αα
T
不可逆.
C、E+2αα
T
不可逆.
D、E-2αα
T
不可逆.
答案
A
解析
1 如果取2维单位向量α=
,则题中4个选项中的矩阵依次为
其中只有选项A中的矩阵是不可逆的,其余均可逆,故选A.
2 对于任意的n维单位列向量α,可以证明选项A中的矩阵的行列式必等于零,为简明起见,以n=3为例来证明(一般情形的证明类似).设α=(α
1
,α
2
,α
3
)
T
是任意的3维单位列向量,则a
1
2
+a
2
2
+a
3
2
=1,选项A中的矩阵的行列式为(不妨设a
1
≠0)
det(E-αα
T
)
分别将第2行的a
2
倍、第3行的a
3
倍加到第1行上去,并利用a
1
2
+a
2
2
+a
3
2
=1,得行列式的第1行为零行,故该行列式等于零,从而知选项A中的矩阵是不可逆的,故选A.
3 对于单位列向量α,有α
T
α=1,由于
(E-αα
T
)α=α-α(α
T
α)=α-α=0,
故齐次线性方程组(E-αα
T
)x=0存在非零解α,因此矩阵E-αα
T
不可逆,故选A.
4 对于单位列向量α,有α
T
α=1,于是有
(E+αα
T
)(E-
α(α
T
α)α
T
=E,
(E+αα
T
)
-1
=E-
αα
T
;
(E+2αα
T
)(E-
α(α
T
α)α
T
=E,
(E+2αα
T
)
-1
=E-
αα
T
;
(E-2αα
T
)(E-2αα
T
)=E-2αα
T
-2α
T
α+4α(α
T
α)α
T
=E,
(E-2αα
T
)
-1
=E-2αα
T
转载请注明原文地址:https://kaotiyun.com/show/EHW4777K
0
考研数学三
相关试题推荐
某工厂生产甲、乙两种产品,当这两种产品的产量分别为x和y(单位:吨)时的总收益函数为R(x,y)=42x+27y-4x2-2xy-2,总成本函数为C(x,y)=36+8x+12y(单位:万元).除此之外,生产甲、乙两种产品每吨还需分别支付排污费2万元,1万
设f(x,y)在点(a,b)的某邻域具有二阶连续偏导数,且f’y(a,b)≠0,证明由方程f(x,y)=0在x=a的某邻域所确定的隐函数y=φ(x)在x=a处取得极值b=φ(a)的必要条件是:f(a,b)=0,f’x(a,b)=0,
求微分方程x(y2-1)dx+y(x2-1)dy=0的通解.
已知α1=(1,-1,1)T,α2=(1,t,-1)T,α3=(t,1,2)T,β=(4,t2,-4)T,若β可以由α1,α2,α3线性表出且表示法不唯一,求t及β的表达式.
若α1=(1,0,5,2)T,α2=(3,-2,3,-4)T,α3=(-1,1,t,3)T线性相关,则t=______.
如果秩r(α1,α2,…,αs)=r(α1,α2,…,αs,αs+1),证明αs+1可由α1,α2,…,αs线性表出.
已知n阶行列式|A|=,则|A|的第k行代数余子式的和Ak1+Ak2+…+Akn=______.
证明:与基础解系等价的线性无关的向量组也是基础解系.
设矩阵A=的特征值有重根,试求正交矩阵Q,使QTAQ为对角形.
设二次型f(x1,x2,x3)=ax12+ax22+(a-1)x32+2x1x3-2x2x3,(Ⅰ)求二次型f的矩阵的所有特征值;(Ⅱ)若二次型f的规范形为y12+y22,求a的值.
随机试题
吗啡镇咳的部位是
男性55岁,既往糖尿病史10年。查体:身高170cm,体重80kg,BP1.35/80mmHg,HR72次/分,心脏各瓣膜区未闻及杂音。实验室检查:TG4.35mmol/L,Tc7.28mmol/L,LDL-C5.0mmol/L,首选的治疗药物是(
患者,女,48岁,急性肾衰竭少尿期。患者突然呼吸困难,头痛头晕,软瘫,心律不齐,心动过缓,腹胀。应考虑
施工单位应当根据建设工程施工的特点、范围,对施工现场()进行监控,制定施工现场生产安全事故应急救援预案。
激励约束机制是()的重要内容,商业银行充分发挥激励约束机制能促进银行业稳健经营和可持续发展。
下列不属于企业管理状况风险的是()。
责任中心的某些成本从短期看属于不可控的成本,从较长时期来看,又成了可控成本。( )
设A为四阶可逆方阵,将A第3列乘3倍再与第1列交换位置,得到矩阵B,则B-1A=_______.
DorothyCrowfootHodgkinWhenDorothyCrowfootHodgkinwastenyearsold,shewatchedherfirstcrystalsformonastringda
Anewstudyfindsthatevenmildstresscanaffectyourabilitytocontrolyouremotions.AteamofneuroscientistsatNewYork
最新回复
(
0
)