首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α为n维单位列向量,E为n阶单位矩阵,则( )
设α为n维单位列向量,E为n阶单位矩阵,则( )
admin
2018-07-26
65
问题
设α为n维单位列向量,E为n阶单位矩阵,则( )
选项
A、E-αα
T
不可逆.
B、E+αα
T
不可逆.
C、E+2αα
T
不可逆.
D、E-2αα
T
不可逆.
答案
A
解析
1 如果取2维单位向量α=
,则题中4个选项中的矩阵依次为
其中只有选项A中的矩阵是不可逆的,其余均可逆,故选A.
2 对于任意的n维单位列向量α,可以证明选项A中的矩阵的行列式必等于零,为简明起见,以n=3为例来证明(一般情形的证明类似).设α=(α
1
,α
2
,α
3
)
T
是任意的3维单位列向量,则a
1
2
+a
2
2
+a
3
2
=1,选项A中的矩阵的行列式为(不妨设a
1
≠0)
det(E-αα
T
)
分别将第2行的a
2
倍、第3行的a
3
倍加到第1行上去,并利用a
1
2
+a
2
2
+a
3
2
=1,得行列式的第1行为零行,故该行列式等于零,从而知选项A中的矩阵是不可逆的,故选A.
3 对于单位列向量α,有α
T
α=1,由于
(E-αα
T
)α=α-α(α
T
α)=α-α=0,
故齐次线性方程组(E-αα
T
)x=0存在非零解α,因此矩阵E-αα
T
不可逆,故选A.
4 对于单位列向量α,有α
T
α=1,于是有
(E+αα
T
)(E-
α(α
T
α)α
T
=E,
(E+αα
T
)
-1
=E-
αα
T
;
(E+2αα
T
)(E-
α(α
T
α)α
T
=E,
(E+2αα
T
)
-1
=E-
αα
T
;
(E-2αα
T
)(E-2αα
T
)=E-2αα
T
-2α
T
α+4α(α
T
α)α
T
=E,
(E-2αα
T
)
-1
=E-2αα
T
转载请注明原文地址:https://kaotiyun.com/show/EHW4777K
0
考研数学三
相关试题推荐
设A是n阶矩阵,Am=0,证明E-A可逆.
设A,B均为n阶矩阵,E+AB可逆,化简(E+BA)[E-B(E+AB)-1A].
设f(x)在(-∞,+∞)连续,存在极限.证明:(Ⅰ)设A<B,则对∈(-∞,+∞),使得f(ξ)=μ;(Ⅱ)f(x)在(-∞,+∞)上有界.
设f(x)=试确定常数a,使f(x)在x=0处右连续.
设某商品的需求量D和供给量S各自对价格P的函数为D(P)=,S(P)=bP,且P是时间t的函数,并满足方程=k[D(P)-S(P)],其中a,b,k为正的常数.求:(Ⅰ)需求量与供给量相等时的均衡价格Pe;(Ⅱ)当t=0,P=1时的价格函数P(t);
若向量组α1,α2,α3线性相关,向量组α2,α3,α4线性无关,试问α4能否由α1,α2,α3线性表出?并说明理由.
如果秩r(α1,α2,…,αs)=r(α1,α2,…,αs,αs+1),证明αs+1可由α1,α2,…,αs线性表出.
与α1=(1,-1,0,2)T,α2=(2,3,1,1)T,α3=(0,0,1,2)T都正交的单位向量是________.
设A,B均为n阶矩阵,|A|=2,|B|=-3,求(Ⅰ)|2A*B-1|;(Ⅱ)||2A*|BT|.
设矩阵A=,行列式|A|=-1,又A*有一个特征值λ0,属于λ0的一个特征向量为α=(-1,-1,1)T,求a,b,c及λ0的值.
随机试题
肌梭传入纤维的神经冲动可
对过敏性紫癜的患儿要注意观察皮疹的
A.感染率B.续发率C.引入率D.死亡率E.累积死亡率一定时间内,一定人群中,死于某病的频率,称为
胶体金取代传统三大标记物,用于肉眼水平的免疫检测中的优点为
《安全生产法》规定,生产经营单位应当在较大危险因素的生产经营场所和有关设施、设备上,设置明显的()。
具有合同效力的监理组织协调方法是( )。
下列各项不属于施工组织设计应当包括的内容的是()。
随着通信网络的数字化,端到端的数字传输在大多数情况下可以实现,在下列网络中目前还不能实现端到端的数字传输是()。
主办国,东道主国家
二进制数10100101011转换成十六进制数是
最新回复
(
0
)