首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)是连续函数,F(x)是f(x)的原函数,则
设f(x)是连续函数,F(x)是f(x)的原函数,则
admin
2014-01-26
43
问题
设f(x)是连续函数,F(x)是f(x)的原函数,则
选项
A、当f(x)是奇函数时,F(x)必是偶函数.
B、当f(x)是偶函数时,F(x)必是奇函数.
C、当f(x)是周期函数时,F(x)必是周期函数.
D、当f(x)是单调增函数时,F(x)必是单调增函数.
答案
A
解析
[分析] 本题涉及原函数的基本特性,由于原函数有无穷多个,如何表示它是问题的关键.实际上,只要找出一个原函数,则所有的原函数就可表示出来,而F(x)=∫
0
x
f(t)dt正好就是所需要的一个原函数.
[详解]f(x)的原函数F(x)可以表示为F(x)=∫
0
x
f(t)dt+C,于是
当f(x)为奇函数时,f(-u)=-f(u),从而有
即F(x)为偶函数,
故应选(A).
至于选项(B)、(C)、(D),可分别举反例如下:f(x)=x
2
是偶函数,但其原函数F(x)=
,不是奇函数,可排除(B);f(x)=cos
2
x是周期函数,但其原函数F(x)=
不是周期函数,可排除(C);f(x)=x在区间(-∞,+∞)内是单调增函数,但其原函数
在区间(-∞,+∞)内非单调增函数,可排除(D).
[评注1] 有些考生将原函数写成形如:F(x)=∫
0
a
f(t)dt+C,结果在推导F(x)=F(x)时遇到困难,因此特殊形式的原函数∫
0
x
f(t)dt是值得注意的.
[评注2] 函数的基本性质有:奇偶性、周期性、单凋性和有界性,当f(x)具有某性质时,F(x)是否也具有相应的性质?或反过来考虑,当F(x)具有某性质时,f(x)是否也具有相应的性质?本题也可变形为考虑f(x)与f’(x)(或f’(x)与f(x))的性质之间的关系,对于常见的结论与反例应做到心中有数.
转载请注明原文地址:https://kaotiyun.com/show/EL34777K
0
考研数学二
相关试题推荐
(2012年)由曲线y=和直线y=x及y=4x在第一象限中围成的平面图形的面积为______。
设随机变量X的概率密度f(χ)满足f(1+χ)=f(1-χ),且∫01f(χ)dχ=0.6,则P{X<0}=
(14年)证明n阶矩阵相似.
(11年)设A为4×3矩阵,η1,η2,η3是非齐次线性方程组Aχ=β的3个线性无关的解,k1,k2为任意常数,则Aχ=β的通解为【】
[2018年]将长为2m的铁丝分成三段,依次围成圆、正方形与正三角形.三个图形的面积之和是否存在最小值?若存在,求出最小值.
[2004年]设n阶矩阵求A的特征值和特征向量;
(03年)将一枚硬币独立地掷两次,引进事件:A1={掷第一次出现正面},A2={掷第二次出现正面},A3={正、反面各出现一次},A4={正面出现两次},则事件【】
(16年)级数sin(n+k)(k为常数)【】
设f(x,y)=x+Y+1在D={(x,y)|x2+y2≤a2,a>0}上取得最大值+1,求a的值.
设f(x)=∫01-cosxsint2dt,g(x)=x5/5+x6/6,则当x→0时,f(x)是g(x)的().
随机试题
安全阀上游的截断阀宜选用全通径球阀。()
下列选项中,属于商业银行经营原则的有()。
下列房地产价格的影响因素中,属于一般因素的有()。
在施工过程中,如果承包人提出要求使用专利技术及特殊工艺,经工程师批准后,应由()。
假设叶先生与叶太太是你的新客户,目前正面临生涯与家庭上的转变,需要金融理财师协助规划。经过初步沟通面谈后,你获得了以下家庭、职业与财务信息:一、案例成员二、收支情况1.叶先生一家月收入7000元(叶先生月收入4000元;叶太太月收入3000元),叶
教育法规体系的横向结构是指按所调整的社会关系的性质或社会关系的构成要素的不同,划分出若干处于()层级的部门法,形成教育法调整的横向覆盖面。
在有指导的发现学习中,教师提示和指导学生思维以促进学生的理解,这种教学属于()。(2017年)
商业贿赂
设向量组α1,α2,α3,α4线性无关,则下列向量组中线性无关的是
A、Withaknife.B、Ontheedgeofsomemetal.C、Onsomeglass.D、Onapieceofpaper.DHowdidthemancuthimself?
最新回复
(
0
)