首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二维随机变量(X1,X2)~N(0,0,1,1;0).记X=max{X1,X2},Y=min{X1,X2},Z=X-Y. 求二维随机变量(X,Y)的分布函数.
设二维随机变量(X1,X2)~N(0,0,1,1;0).记X=max{X1,X2},Y=min{X1,X2},Z=X-Y. 求二维随机变量(X,Y)的分布函数.
admin
2022-04-27
50
问题
设二维随机变量(X
1
,X
2
)~N(0,0,1,1;0).记X=max{X
1
,X
2
},Y=min{X
1
,X
2
},Z=X-Y.
求二维随机变量(X,Y)的分布函数.
选项
答案
F(x,y)=P{X≤x,Y≤y} =P{max{X
1
,X
2
}≤x,min{X
1
,X
2
}≤y}[*]P(AB) 其中 A={max{X
1
,X
2
}≤x}={X
1
≤x,X
2
≤x}, B={min{X
1
,X
2
}≤y}={X
1
≤y}∪{X
2
≤y}, B={min{X
1
,X
2
}>y}={X
1
>y,X
2
>y}. 由A=AB∪[*],可知P(AB)=P(A)-P([*]),故 F(x,y)=P(AB)=P(A)-P([*]) =P{X
1
≤x,X
2
≤x)-P{X
1
≤x,X
2
≤x,X
1
>y,X
2
>y} =P{X
1
≤x}P{X
2
≤x}-P(X
1
≤x,X
1
>y}P{X
2
≤x,X
2
>y} =Φ
2
(x)P{X
1
≤x,X
1
>y}P{X
2
≤x,X
2
>y}. 当x≤y时,F(x,y)=Φ
2
(x). 当x>y时, F(x,y)=Φ
2
(x)-P{y<X
1
≤x}P{y<X
2
≤x} =Φ
2
(x)-[Φ(x)-Φ(y)]
2
=2Φ(x)Φ(y)-Φ
2
(y). 综上所述,(X,Y)的分布函数为 F(x,y)=[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/ELR4777K
0
考研数学三
相关试题推荐
求
已知下列非齐次线性方程组:当方程组中的参数m,n,t为何值时,方程组(I)与(Ⅱ)同解.
设函数f(x)在区间[0,4]上连续,且f(x)dx=0,求证:存在ξ∈(0,4)使得f(ξ)+f(4一ξ)=0.
设四阶实方阵A满足条件=0,且IAl=9.则A*的一个特征值为_____,|A|2A-1的一个特征值为_____.
已知二次型f(x1,x2,x3)=+2ax1x2+2bx2x3+2x1x3经正交变换化为标准形f(x1,x2,x3)=,则a,b取值为__________.
设函数y=y(x)由方程确定,其中f具有二阶导数且f’≠1,则=_________.
已知z=f(x,y)满足:dz=2xdx-4ydy且f(0,0)=5.(1)求f(x,y);(2)求f(x,y)在区域D={(x,y)|x2+4y2≤4}上的最小值和最大值.
对于任意二事件A,B,0<P(A)<1,0<P(B)<1,定义A与B的相关系数为利用随机变量相关系数的基本性质,证明|ρAB|≤1.
设A为3阶非零矩阵,且满足aij=Aij(i,j=1,2,3),其中Aij为aij的代数余子式,则下列结论:①A是可逆矩阵;②A是对称矩阵;③A是不可逆矩阵;④A是正交矩阵.其中正确的个数为()
(2015年)设函数f(x)在定义域I上的导数大于零,若对任意的x0∈I,由曲线y=f(x)在点(x0,f(x0))处的切线与直线x=x0及x轴所围成区域的面积恒为4,且f(0)=2,求f(x)的表达式。
随机试题
申请诉前财产保全可以向()人民法院申请。
重新点燃启蒙的火炬在告别20世纪而进入2l世纪之际,中国思想界对启蒙有截然相反的看法。有人历数启蒙的罪状,劝告知识分子放弃启蒙立场;有人则回顾启蒙被压倒的悲剧,希望在中国“重新点燃启蒙的火炬”。面对思想界的矛盾和种种困惑,有一个问题必须回答:今日
无尿的定义是指成年人24小时尿量少于
某患儿,高热2天,烦躁口渴。突然神昏,抽搐,舌质深红,舌苔黄糙,指纹青紫,治疗首选方剂为
某县从事母婴保健工作的医师胡某,违反《母婴保健法规定》,出具有关虚假证明而且情节严重。该县卫生局应依法给予胡某的处理是
下列应征收增值税的有( )。
中国的封建统治者通过科举考试选拔官吏,是从()开始的。
变量的一组取值如下:“11、14、9、8、19、16、12”,变量的中位数和平均数分别是( )。
设随机变量X与Y相互独立且分别服从正态分布N(μ,σ2)与N(μ,2σ2),其中σ是未知参数且σ>0,设Z=X—Y,(Ⅰ)求Z的概率密度f(z,σ2);(Ⅱ)设z1,z2,…,zn为来自总体Z的简单随机样本,求σ2的最大似然估计量.
Whyisitsodifficulttofallasleepwhenyouareovertired?Thereisnooneanswerthat【C1】______toeveryindividual.Butmany
最新回复
(
0
)