首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
证明:非齐次线性方程组(Ⅰ)有解的充要条件是齐次线性方程组(Ⅱ)的任意一组解y1,y2,…,ym必满足方程组(Ⅲ),其中
证明:非齐次线性方程组(Ⅰ)有解的充要条件是齐次线性方程组(Ⅱ)的任意一组解y1,y2,…,ym必满足方程组(Ⅲ),其中
admin
2021-07-27
94
问题
证明:非齐次线性方程组(Ⅰ)有解的充要条件是齐次线性方程组(Ⅱ)的任意一组解y
1
,y
2
,…,y
m
必满足方程组(Ⅲ),其中
选项
答案
设A=(a
ij
)
m×n
,x=[x
1
,x
2
,…,x
n
]
T
,y=[y
1
,y
2
,…,.y
m
]
T
,b=[b
1
,b
2
,…,b
m
]
T
,则方程组(Ⅰ),(Ⅱ),(Ⅲ)的矩阵形式分别是(Ⅰ):Ax=b,(Ⅱ):A
T
y=0,(Ⅲ):b
T
y=0.必要性.如果方程组(Ⅰ)有解。则Ax=b两边同时转置,有b
T
=x
T
A
T
.设y是方程组(Ⅱ)的任一解,则A
T
y=0.于是b
T
y=(x
T
A
T
)y=x
T
(A
T
y)=x
T
0=0,所以方程组(Ⅱ)的任一解y满足方程组(Ⅲ).充分性.将方程组(Ⅱ)和(Ⅲ)联立起来,记为方程组(Ⅳ),其矩阵形式为[*]如果方程组(Ⅱ)的任一解y满足方程组(Ⅲ),即A
T
y=0,b
T
y=0,则方程组(Ⅱ),(Ⅳ)同解.于是方程组(Ⅱ)和(Ⅳ)系数矩阵的秩相等,即[*]由此可知,矩阵[*]的最后一行b
T
可由A
T
的n个行向量线性表示.不妨设A=[α
1
,α
2
,…,α
n
],则[*],所以存在一组数x
1
,x
2
,…,x
n
,使得x
1
α
1
T
+x
2
α
2
T
+…+x
n
α
n
T
=b
T
,两边同时转置得x
1
α
1
+x
2
α
2
+…+x
n
α
n
=b,即Ax=b,因此方程组(Ⅰ)有解.证毕.
解析
转载请注明原文地址:https://kaotiyun.com/show/ELy4777K
0
考研数学二
相关试题推荐
设三阶矩阵A的特征值为λ1=-1,λ2=0,λ3=1,则下列结论不正确的是().
求微分方程y〞+y=χ2+3+cosχ的通解.
已知矩阵A相似于矩阵B=则秩(A-2E)与秩(A-E)之和等于【】
设A为n阶可逆矩阵,λ是A的一个特征值,则A的伴随矩阵A*的特征值之一是()
如图,曲线段的方程为y=f(x),函数f(x)在区间[0,a]上有连续的导数,则定积∫0axf’(x)dx等于()
设α1,α2,…,αs均为n维列向量,A是m×n,矩阵,则下列选项中正确的是()
设A=有四个线性无关的特征向量,求A的特征值与特征向量,并求A2010.
设n维列向量组α1…,αm(m<n)线性无关,则n维列向量组β1…,βm线性无关的充分必要条件是()
已知β1,β2是非齐次线性方程组Ax=b的两个不同的解,α1,α2是对应的齐次线性方程组Ax=0的基础解系,k1,k2为任意常数,则方程组Ax=b的通解是()
设向量组α1,α2,α3为方程组AX=0的一个基础解系,下列向量组中也是方程组AX=0的基础解系的是().
随机试题
对银行报送的基本存款账户、临时存款账户和预算单位专用存款账户的开户资料,中国人民银行应于()个工作日内进行合规性审核,符合开户条件的,予以核准。
Doctorssayangercanbeanextremelydamagingemotionunlessyoulearnhowto【C1】______withit.Theywarnthatangryhostilefe
病人张某,女,48岁,严重烧伤,于上午8时开始输液共3600ml,每分钟滴注90滴。请估计何时完成输液( )。
案情:四川成都的一名退休职工把某电视台主持人赵某告上了法庭。他以赵某在接受某杂志专访时的言论有一句“他有一个团伙”为由,向法院提起侵犯名誉权之诉;而且索赔的标的就是一分钱,此案被法院裁定不予受理。最近,除了有“一分钱官司”,还有“一元钱官司”。例如,北京市
企业以分立或者合并的方式改组,成立了对上市公司控股的公司,则无形资产产权的处置方式有( )。
企业将作为存货的房地产转换为采用公允价值模式计量的投资性房地产时,转换日其公允价值大于账面价值的差额,应确认为()。
以公允价值计量的金融资产可以是单项资产,也可以是资产组合或者资产和负债的组合。()
A.上牙弓狭窄,腭盖高拱B.开和牙间隙C.颜面不对称D.开唇露齿,上前牙前突,下前牙舌倾、拥挤E.前牙反,下颌前突口呼吸习惯引起()。
如图6—3,已知△ABC为等腰直角三角形,∠A=90°,△BDC为等边三角形,则可确定△BDC的面积为(1)△ABC的周长为(2)△ABC的面积为2
计算∫(3+3x-x2)/[(2x+1)(1+x2)]dx.
最新回复
(
0
)