首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知矩阵A的伴随矩阵 且满足ABA-1=BA-1+3E,求矩阵B.
已知矩阵A的伴随矩阵 且满足ABA-1=BA-1+3E,求矩阵B.
admin
2021-02-25
18
问题
已知矩阵A的伴随矩阵
且满足ABA
-1
=BA
-1
+3E,求矩阵B.
选项
答案
解法1:由ABA
-1
=BA
-1
+3E,得A
*
ABA
-1
A=A
*
BA
-1
A+3A
*
A,而|A
*
|=|A|
3
=8,从而,|A|=2,代入上式得2B=A
*
B+6E,即(2E-A
*
)B=6E,显然2E-A
*
可逆,所以 [*] 解法2:在等式ABA
-1
=BA
-1
+3E两端左乘矩阵A
-1
,右乘矩阵A,得 B=A
-1
B+3E. 从而 (E-A
-1
)B=3E. 由于|A
*
|=|A|
n-1
,故有|A|
3
=8,并得|A|=2,所以[*],代入得 [*] 即 (2E-A
*
)B=6E. 而 |2E-A
*
|=-6,即矩阵2E-A
*
可逆,故 [*]
解析
本题考查解矩阵方程和有关矩阵A与其伴随矩阵A
*
的关系式,通过矩阵A与A
*
、A
-1
的关系先化简,再求B.
转载请注明原文地址:https://kaotiyun.com/show/EZ84777K
0
考研数学二
相关试题推荐
设f(x)在[0,1]上连续,在(0,1)内可导,且满足,k>1,证明至少存在一点ξ∈(0,1),使得f’(ξ)=(1-ξ-1)f(ξ).
设三阶实对称矩阵A的特征值为λ1=1,λ2=一1,λ3=0;对应λ1,λ2的特征向量依次为P1=(1,2,2)T,P2=(2,1,一2)T,求A。
设A为n阶实对称矩阵,满足A2=E,并且r(A+E)=k<n.①求二次型xTAx的规范形.②证明B=E+A+A2+A3+A4是正定矩阵,并求|B|.
设A,B为三阶矩阵且A不可逆,又AB+2B=O且r(B)=2,则|A+4E|=().
设f(x)在[a,b]上有二阶导数,且f’(x)>0.(Ⅰ)证明至少存在一点ξ∈(a,b),使∫abf(x)dx=f(b)(ξ一a)+f(a)(b—ξ);(Ⅱ)对(Ⅰ)中的ξ∈(a,6),求.
设f(x)在区间[a,b]上具有二阶导数,且f(a)=f(b)=0,f’(a).f’(b)>0.试证明:存在ξ∈(a,b)和η∈(a,b),使f(ξ)=0及f"(η)=0.
设n元线性方程组Ax=b,其中(Ⅰ)证明行列式|A|=(n+1)an;(Ⅱ)当a为何值时,该方程组有唯一的解,并在此时求x1;(Ⅲ)当a为何值时,该方程组有无穷多解,并在此时求其通解.
[2010年]设A=,存在正交矩阵Q使得QTAQ为对角矩阵,若Q的第1列为[1,2,1]T,求a,Q.
设三阶方阵A,B满足A—1BA=6A+BA,且,则B=______。
设A,B均为n阶方阵,|A|=2,|B|=一3,则|A-1B*一A*B-1|=_______.
随机试题
药物在体内发生化学结构的变化称之为代谢,又称之为生物转化。发生代谢的最主要的器官是()。
为了保持会计指标的前后期可比性,企业下列事项相关报批手续完成后。需要按调整后的股数重新计算各列报期间的每股收益的项目有()。
工资结构线愈陡,各等级之间薪酬差距()。
简述幼儿无意想象发展的特点。
既然环境污染是公认的致癌因素之一,而雾霾又是一种很严重的环境污染,那么__________专业人员__________公众都有理由怀疑雾霾是癌症诱因之一。__________雾霾的致癌作用可能长期得不到研究证实,它也可能对人的健康造成其他方面的影响.没有谁
宋学
若一个用户进程通过read系统调用读取一个磁盘文件中的数据,则下列关于此过程的叙述中,正确的是_______。Ⅰ.若该文件的数据不在内存,则该进程进入睡眠等待状态Ⅱ.请求read系统调用会导致CPU从用户态切换到核心态Ⅲ.read系统调用的参数应包含
杜甫《蜀相》结尾表示感叹的诗句是:
Rememberyoumaybetakentocourtfornotdoingso,andyoumaybefinedifyoucannotprovetothecourtthatyouhavebeene
Therearefewplacesinthiscountry______wheatcan’tgrowwell.
最新回复
(
0
)