首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A是3阶矩阵,α1,α2,α3是线性无关的3维列向量,满足Aα1=一α1一3α2—3α3,Aα2=4α1+4α2+α3,Aα3=一2α1+3α3. 求矩阵A的特征向量;
已知A是3阶矩阵,α1,α2,α3是线性无关的3维列向量,满足Aα1=一α1一3α2—3α3,Aα2=4α1+4α2+α3,Aα3=一2α1+3α3. 求矩阵A的特征向量;
admin
2014-02-06
44
问题
已知A是3阶矩阵,α
1
,α
2
,α
3
是线性无关的3维列向量,满足Aα
1
=一α
1
一3α
2
—3α
3
,Aα
2
=4α
1
+4α
2
+α
3
,Aα
3
=一2α
1
+3α
3
.
求矩阵A的特征向量;
选项
答案
由(E—B)x=0得基解系β
1
=(1,1,1)
T
,即矩阵B属于特征值λ=1的特征向量,由(2E一B)x=0得基础解系β
2
=(2,3,3)
T
,即矩阵B属于特征值λ=2的特征向量,由(3E一B)x=0得基础解系β
3
=(1,3,4)
T
,即矩阵B属于特征值A=3的特征向量,那么令P
2
=(β
1
,β
2
,β
3
),则有P
2
BP
2
=[*]于是令P=P
1
P
2
=(α
1
,α
2
,α
3
)[*]=(α
1
+α
2
+α
3
,2α
1
+3α
2
+3α
3
,α
1
+3α
2
+4α
3
),则有P
-1
AP=(P
1
P
2
)
-1
A(P
1
P
2
)=P
2
-1
(P
1
-1
AP
1
)P
2
=P
2
-1
BP
2
=[*]所以矩阵A属于特征值1,2,3的线性尤关的特征向量依次为k
1
(α
1
+α
2
+α
3
),k
2
(2α
1
+3α
2
+3α
3
),k
3
(α
1
+3α
2
+4α
3
),k
i
≠0(i=1,2,3)
解析
转载请注明原文地址:https://kaotiyun.com/show/Ej54777K
0
考研数学一
相关试题推荐
设L是一条平面曲线,其上任意一点P(x,y)(x>0)到坐标原点的距离,恒等于该点处的切线在y轴上的截距,且L经过点(1/2,0).求曲线L的方程;
求下列微分方程满足初始条件的特解:
解下列一阶微分方程
设a1,a2线性无关,a1+b,a2+b线性相关,求向量b用a1,a2线性表示的表示式.
设α1,α2,α3为两两正交的单位向量,又β≠0且α1,α2,α3,β线性相关,令(Ⅰ)证明:β可由α1,α2,α3唯一线性表示;(Ⅱ)验证β为矩阵A的特征向量,并求相应的特征值.
设曲线L:y=f(x)位于第一象限,且经过点M0(1,3),P(x,y)为曲线L上的任一点,在[0,x]上,以f(x)为高的矩形面积与上以L为曲边的曲边梯形面积的三倍之差等于-x2.(Ⅰ)求f(x);(Ⅱ)求y=f(x)与x轴及x=2围成的区域绕x=3
一容器内表面是由曲线y=x2(0≤x≤2,单位:m)绕y轴旋转一周所得到的曲面,现以2m3/min的速率注入某液体,求:当液面升高到1m时液面上升的速率.
证明:,其中L是围成区域D的闭曲线,表示函数f(x,y)在曲线L上的点M(x,y)处沿L的外法线方向n的方向导数.
(1997年试题,二)设则F(x)().
若f’(cosx+2)=tan2x+3sin2x,且f(0)=8,则f(x)=__________.
随机试题
下列行为中构成专利侵权的是()。
从造字法来看,“明”是_____字。
女,65岁,因头痛、右侧肢体无力7天入院。胸片:右肺可见圆形病灶,头部CT提示脑转移瘤,肿瘤周围脑水肿明显。本例瘤周水肿系
某研究者收集了2种疾病患者痰液内嗜酸性粒细胞的检查结果,整理成下表:若要比较2种疾病患者痰液内的嗜酸性粒细胞数是否有差别应选择
在下列关于财务管理“引导原则”的说法中,错误的是()。
关于老年人的权益,尤其是精神方面的保护,最近进行了立法,谈谈对这一问题的看法。
关于香港特别行政区的政府,说法正确的有()。
Whyare"HowTo"booksingreatdemandintheUnitedStates?
Whatistherelationshipbetweenthetwopersons?
A—thechiefcoachB—thechiefrefereeC—thedefenderD—centreforwardE—thesecon
最新回复
(
0
)