首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知二次型f(x1,x2,x3)=(1—a)x12+(1—a)x22+2x32+2(1+a)x1x2的秩为2. (1)求a. (2)求作正交变换X=QY,把f(x1,x2,x3)化为标准形. (3)求方程f(x1,x2,x3)=0的解.
已知二次型f(x1,x2,x3)=(1—a)x12+(1—a)x22+2x32+2(1+a)x1x2的秩为2. (1)求a. (2)求作正交变换X=QY,把f(x1,x2,x3)化为标准形. (3)求方程f(x1,x2,x3)=0的解.
admin
2017-08-07
69
问题
已知二次型f(x
1
,x
2
,x
3
)=(1—a)x
1
2
+(1—a)x
2
2
+2x
3
2
+2(1+a)x
1
x
2
的秩为2.
(1)求a.
(2)求作正交变换X=QY,把f(x
1
,x
2
,x
3
)化为标准形.
(3)求方程f(x
1
,x
2
,x
3
)=0的解.
选项
答案
(1)此二次型的矩阵为 [*] 则r(a)=2,|A|=0.求得|A|=一8a,得a=0. [*] 得A的特征值为2,2,0. 对特征值2求两个正交的单位特征向量: [*] 得(A一2E)X=0的同解方程组x
1
一x
2
=0,求出基础解系η
1
=(0,0,1)
T
,η
2
=(1,1,0)
T
.它们正交,单位化:α
1
=η
1
,[*] 方程x
1
一x
2
=0的系数向量η
3
=(1,一1,0)
T
和η
1
,η
2
都正交,是属于特征值0的一个特征向量,单位化得 [*] 作正交变换X=QY,则f化为Y的二次型f=2y
1
2
+2y
2
2
. (3)f(X)=x
1
2
+x
2
2
+2x
3
2
+2x
1
x
2
=(x
1
+x
2
)
2
+2x
3
2
. [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/Eor4777K
0
考研数学一
相关试题推荐
(2005年试题,17)如图1—3—2所示,曲线c的方程为y=f(x),A(3,2)是它的一个拐点,直线l1与l2分别是曲线C在点(0,0)与(3,2)处的切线,其交点为(2,4).设函数f(x)具有三阶连续导数,计算定积分
(2006年试题,22)设随机变量X的概率密度为令Y=X2,F(x,y)为二维随机变量(X,Y)的分布函数.求
(1998年试题,一)设平面区域D由曲线及直线y=0,x=1,x=e2所围成,二维随机变量(X,Y)在区域D上服从均匀分布,则(X,Y)关于X的边缘概率密度在x=2处的值为___________.
(2004年试题,一)设随机变量X服从参数为λ的指数分布,则=__________.
(1998年试题,十)已知二次曲面方程x2+ay2+z2+2bxy+2xz+2yz=4可以经过正交变换化为椭圆柱面方程η2+4ζ2=4,求a,b的值和正交矩阵P.
(1997年试题,八)A是n阶可逆方阵,将A的第i行和第j行对换后得到的矩阵记为B.证明B可逆;
(2008年试题,4)设函数f(x)在(一∞,+∞)内单调有界,{xn}为数列,下列命题正确的是().
已知三元二次型xTAx的平方项系数均为α,设α=(1,2,一1)T且满足Aα=2α.求正交变换x=Qy化二次型为标准形,并写出所用坐标变换;
设二次型f(x1,x2,x3)=x12-x22+2ax1x3+4x2x3,的负惯性指数为1,则a的取值范围是
投掷一枚硬币三次,观察三次投掷出现正反面情况,比如一种可能结果为HTT(表示第一次出现的是正面,第二次和第三次出现的都是反面).写出所有可能结果构成的样本空间Ω;
随机试题
为了保证计划目标得以实现,就需要有控制职能,控制的实质就是使()
Menhavetraveledeversincetheyfirstappearedontheearth.Inprimitivetimestheydidnottravelforpleasurebuttofin
患者,男,43岁。被热水轻度烫伤,疮疡肿痛、创面溃烂。所选中成药的功能是
A.颈部和锁骨上窝B.左腋下和肩胛下区C.胸骨左缘和心底部D.胸骨左缘和心尖部E.心尖部下列各心脏病变所产生的杂音可以传导至二尖瓣后叶关闭不全
施工招标阶段,招标人发给投标人的下列书面文件中,不构成对招标人和投标人有约束力的招标文件组成部分的是()。
大型或复杂的工业投资项目的建设方案总体设计一般包括哪些工作?有何注意事项?
改进投资宏观调控方式应该()。
以下各种收入中,属于施工企业建造合同收入的是()。
韩愈的《师说》中说:“古之学者必有师。师者,所以传道授业解惑也。”体现了()。
日益严重的抗生素抗药性使得人们将来可能死于今天很容易治愈的疾病。有研究称,蚂蚁可能成为新型抗生素的来源。上述结论的成立需要补充下列()项作为前提。
最新回复
(
0
)