首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知非齐次线性方程组 有3个线性无关的解. (1)证明:方程组的系数矩阵A的秩R(A)=2; (2)求a,b的值及方程组的通解.
已知非齐次线性方程组 有3个线性无关的解. (1)证明:方程组的系数矩阵A的秩R(A)=2; (2)求a,b的值及方程组的通解.
admin
2020-06-05
37
问题
已知非齐次线性方程组
有3个线性无关的解.
(1)证明:方程组的系数矩阵A的秩R(A)=2;
(2)求a,b的值及方程组的通解.
选项
答案
(1)设α
1
,α
2
,α
3
是非齐次方程组Ax=b的3个线性无关的解,那么α
1
-α
2
,α
2
-α
3
是Ax=0线性无关的解,所以n-R(A)≥2,即R(A)≤2.又矩阵A中有2阶子式[*]≠0,即R(A)≥2,从而R(A)=2. (2)对增广矩阵作初等行变换: [*] 由R(A)=[*]=2知4-2a=0,b+4a-5=0,即a=2,b=﹣3.此时,其通解为 [*] 其中c
1
,c
2
为任意实数.
解析
转载请注明原文地址:https://kaotiyun.com/show/F8v4777K
0
考研数学一
相关试题推荐
若向量组α1,α2,α3,α4线性相关,且向量α4不可由向量组α1,α2,α3线性表示,则下列结论正确的是().
实对称矩阵A的秩等于r,它有£个正特征值,则它的符号差为()
设f(x)是二阶常系数非齐次线性微分方程y"+py’+qy=sin2x+2ex的满足初始条件f(0)=f’(0)=0的特解,则当x→0时,().
直线1:之间的关系是()
设α1,α2,…,αm与β1,β2,…,βs为两个n维向量组,且r(α1,α2,…,αm)=r(β1,β2,…,βs)=r,则().
设y=y(x)是二阶线性常系数非齐次微分方程y"+Py’+Qy=3e2x满足初始条件y(0)=y’(0)=0的特解,则极限=()
设A是n阶矩阵,下列命题中正确的是()
已知n维向量组α1,α2,…,αs线性无关,则n维向量组β1,β2,…,βs也线性无关的充分必要条件为
设有齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,则下列命题①若Ax=0的解均是Bx=0的解,则秩r(A)≥r(B)②若秩r(A)≥r(B),则Ax=0的解均是Bx=0的解③若Ax=0与Bx=0同解,则秩r(A)=r(B)④若秩r(A
设A是5×4矩阵,r(A)=4,则下列命题中错误的为
随机试题
下列关于腰痛类型与临床特点的表述。错误的是
女性,10岁。患儿在口腔检查时发现,右上Ⅳ缺失,缺牙间隙已明显缩小,拟采用哪种间隙保持器最为合适
亚临床肝癌是指
根据《火灾自动报警系统施工及验收规范》(GB50166—2007)要求,下列关于火灾自动报警系统周期性维护保养的说法中,正确的是()。
公共关系在组织经营管理过程中的基本职能可归纳为()等方面。
案例一般资料:求助者,女性,26岁,未婚,硕士研究生学历,公司职员。案例介绍:求助者父亲在春节时突发心脏病去世,求助者非常痛苦,久久不能摆脱。近来经常有不安感,害怕自己或母亲也有什么不幸,为此生活中总是小心翼翼,就连乘车时都担心发生车祸
下面属于韩愈的主张的是:
设二维随机变量(X,Y)在区域D={(x,y)|0≤x≤1,0≤y≤2|上服从均匀分布,令Z=min(X,Y),求EZ与DZ.
汉字的国标码与其内码存在的关系是:汉字的内码=汉字的国标码+()。
CanTonyBlairSavetheWorldofBooks?[A]AtthebeginningofAJourney,TonyBlairboaststhathehas"thesoulofarebel".L
最新回复
(
0
)