首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知非齐次线性方程组 有3个线性无关的解. (1)证明:方程组的系数矩阵A的秩R(A)=2; (2)求a,b的值及方程组的通解.
已知非齐次线性方程组 有3个线性无关的解. (1)证明:方程组的系数矩阵A的秩R(A)=2; (2)求a,b的值及方程组的通解.
admin
2020-06-05
71
问题
已知非齐次线性方程组
有3个线性无关的解.
(1)证明:方程组的系数矩阵A的秩R(A)=2;
(2)求a,b的值及方程组的通解.
选项
答案
(1)设α
1
,α
2
,α
3
是非齐次方程组Ax=b的3个线性无关的解,那么α
1
-α
2
,α
2
-α
3
是Ax=0线性无关的解,所以n-R(A)≥2,即R(A)≤2.又矩阵A中有2阶子式[*]≠0,即R(A)≥2,从而R(A)=2. (2)对增广矩阵作初等行变换: [*] 由R(A)=[*]=2知4-2a=0,b+4a-5=0,即a=2,b=﹣3.此时,其通解为 [*] 其中c
1
,c
2
为任意实数.
解析
转载请注明原文地址:https://kaotiyun.com/show/F8v4777K
0
考研数学一
相关试题推荐
已知α1,α2,α3,α4为3维非零列向量,则下列结论:①如果α4不能由α1,α2,α3线性表出,则α1,α2,α3线性相关;②如果α1,α2,α3线性相关,α2,α3,α4线性相关,则α1,α2,α4也线性相关;③如果r(α
设A,B为n阶对称矩阵,下列结论不正确的是().
实对称矩阵A的秩等于r,它有£个正特征值,则它的符号差为()
设A,B都是n阶可逆矩阵,则().
设A是m×n矩阵,则方程组AX=b有唯一解的充分必要条件是()
设y=y(x)是二阶线性常系数非齐次微分方程y"+Py’+Qy=3e2x满足初始条件y(0)=y’(0)=0的特解,则极限=()
设n阶矩阵A的伴随矩阵A*≠O,若ξ1,ξ2,ξ3,ξ4是非齐次线性方程组Ax=b的互不相等的解,则对应的齐次线性方程组Ax=0的基础解系()
非齐次线性方程组Ax=b中未知量的个数为n,方程个数为m,系数矩阵A的秩为r,则正确命题是
设函数f(x)和g(x)在区间[a,b]上连续,在区间(a,b)内可导,且f(a)=g(b)=0,gˊ(x)<0,试证明存在ξ∈(a,b)使
A=,其中a1,a2,a3,a4两两不等,下列命题正确的是().
随机试题
验型是保证大型铸件质量、防止铸件产生缺陷所必需的重要工艺操作。但验型容易损坏砂型,所以合型后开型的次数以()次为宜。
设a是一个常数,且f(x)=a,则函数f(x)在点x0处().
波长为λ的X射线,投射到晶格常数为d的晶体上,取k=1,2,3,…,出现X射线衍射加强的衍射角θ(衍射的X射线与晶面的夹角)满足的公式为()。
当均质土坝或心墙坝施工质量不好,坝体坝基渗漏严重,可采用()处理。
债权人与债务人应当在合同中约定,债权人留置财产后,债务人履行债务的期限应当不少于()。
注册会计师运用分析程序的基础就是利用分析()各因素的内在关系。
2013年10月31日,甲公司应收乙公司的一笔货款500万元到期,由于乙公司发生财务困难该笔贷款预计在短期内容无法回收。甲公司已为该债权计提坏账准备100万元。当日甲公司就该项债权与乙公司进行协商,下列协商方案中,属于甲公司债务重组的有()。
A:Todaywearegoingtotalkaboutagreatinvention.Itlookslikeahumanbeing.【T1】________B:It’sarobot.【T2】________
梁朝简文帝诗云:“紫燕跃武,赤兔越空。”两句中赤兔指良马,紫燕亦指良马。李善注谢灵运诗云:“文帝自代还,有良马九匹,一名飞燕骝。”在古代,武威铜马足下的飞燕无疑是用来比喻良马之神速。这种造型让人一看便知其意,所以铜马应直截了当取名为“紫燕骝”或“飞燕骝”,
Themoneyisthere.Sowhyisitnotbeingspent?Thatisthebigpuzzleabouttherichworld’seffortstoimprovehealthinpoo
最新回复
(
0
)