首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知非齐次线性方程组 有3个线性无关的解. (1)证明:方程组的系数矩阵A的秩R(A)=2; (2)求a,b的值及方程组的通解.
已知非齐次线性方程组 有3个线性无关的解. (1)证明:方程组的系数矩阵A的秩R(A)=2; (2)求a,b的值及方程组的通解.
admin
2020-06-05
46
问题
已知非齐次线性方程组
有3个线性无关的解.
(1)证明:方程组的系数矩阵A的秩R(A)=2;
(2)求a,b的值及方程组的通解.
选项
答案
(1)设α
1
,α
2
,α
3
是非齐次方程组Ax=b的3个线性无关的解,那么α
1
-α
2
,α
2
-α
3
是Ax=0线性无关的解,所以n-R(A)≥2,即R(A)≤2.又矩阵A中有2阶子式[*]≠0,即R(A)≥2,从而R(A)=2. (2)对增广矩阵作初等行变换: [*] 由R(A)=[*]=2知4-2a=0,b+4a-5=0,即a=2,b=﹣3.此时,其通解为 [*] 其中c
1
,c
2
为任意实数.
解析
转载请注明原文地址:https://kaotiyun.com/show/F8v4777K
0
考研数学一
相关试题推荐
设f(x)是二阶常系数非齐次线性微分方程y’’+py’+qy=sin2x+2ex的满足初始条件f(0)=f’(0)=0的特解,则当x→0时,().
已知n维向量组(Ⅰ):α1,α2,…,αs和向量组(Ⅱ):β1,β2,…,βt的秩都等于r,那么下述命题不正确的是()
设A,B是任意两个随机事件,又知BA,且P(A)<P(B)<1,则一定有
n阶实对称矩阵A正定的充分必要条件是()
设A,B都是n阶可逆矩阵,则().
设α1,α2,α3,α4为四维非零列向量组,令A=(α1,α2,α3,α4),AX=0的通解为X=k(0,一1,3,0)T,则A*X=0的基础解系为()
设可微函数f(x,y)在点(x0,y0)处取得极小值,则下列结论正确的是().
要使都是线性方程组AX=0的解,只要系数矩阵A为
y1,y2是一阶线性非齐次微分方程y’+p(x)y=q(x)的两个特解,若常数λ,μ使λy1+y2是该方程的解,λy1-μy2是该方程对应的齐次方程的解,则
A=,其中a1,a2,a3,a4两两不等,下列命题正确的是().
随机试题
许某与汤某系夫妻,婚后许某精神失常。二人提出离婚,某县民政局准予离婚。许某之兄认为许某为无民事行为能力人,县民政局准予离婚行为违法,遂提起行政诉讼。县民政局向法院提交了县医院对许某作出的间歇性精神病的鉴定结论。许某之兄申请法院重新进行鉴定。下列哪些选项是正
顺铣方式主要用于精加工及铣削薄壁件、塑料件和尼龙件。
某高校为改善教育经费不足的状况,多方筹集资金开办了一家校办企业,命名为某实业发展公司。2009年10月,该公司为扩大经营规模,拟向某银行贷款300万元。银行要求该公司提供担保,但由于贷款数额太大无人愿意提供担保。这时银行提出可以由其主办人某高校作保证人,公
激光构造深度仪的测值应通过相关性试验建立相关性关系式。转换为铺砂法构造深度值后,才能进行测试结果的评定。()
斜拉桥主梁施工监控测试的主要内容( )。
暗沟采用混凝土浇筑或浆砌片石砌筑时,要求满足的条件有()。
某企业将自产的一批应税消费品(非金银首饰)用于在建工程。该批消费品成本为750万元,计税价格为1250万元,适用的增值税税率为17%,消费税税率为10%。计入在建工程成本的金额为()万元。
惩罚最为严厉的法律责任是()
我国解决“三农问题”的根本途径是使农村城市化。()
有人把香港说成是“文化沙漠”。实际上,香港有着其独特的文化氛围。在电影制作方面,香港名列世界前茅,其流行歌曲在全球华人中有着广泛的影响,而且还有8所知名的大学。这座城市特殊的历史和地理因素造就了一种多样化的文化。每年一度由政府主办的艺术嘉年华为当地艺术家展
最新回复
(
0
)