首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组(Ⅰ):α1,α2,α3;(Ⅱ):α1,α2,α3,α4;(Ⅲ):α1,α2,α3,α5,若向量组(Ⅰ)与向量组(Ⅱ)的秩为3,而向量组(Ⅲ)的秩为4,证明:向量组α1,α2,α3,α5-α4的秩为4.
设向量组(Ⅰ):α1,α2,α3;(Ⅱ):α1,α2,α3,α4;(Ⅲ):α1,α2,α3,α5,若向量组(Ⅰ)与向量组(Ⅱ)的秩为3,而向量组(Ⅲ)的秩为4,证明:向量组α1,α2,α3,α5-α4的秩为4.
admin
2022-04-02
57
问题
设向量组(Ⅰ):α
1
,α
2
,α
3
;(Ⅱ):α
1
,α
2
,α
3
,α
4
;(Ⅲ):α
1
,α
2
,α
3
,α
5
,若向量组(Ⅰ)与向量组(Ⅱ)的秩为3,而向量组(Ⅲ)的秩为4,证明:向量组α
1
,α
2
,α
3
,α
5
-α
4
的秩为4.
选项
答案
因为向量组(Ⅰ)的秩为3,所以α
1
,α
2
,α
3
线性无关,又因为向量组(Ⅱ)的秩也为3,所以向量α
4
可由向量组α
1
,α
2
,α
3
线性表示. 因为向量组(Ⅲ)的秩为4,所以α
1
,α
2
,α
3
,α
5
线性无关,即向量α
5
不可由向量组α
1
,α
2
,α
3
线性表示,故向量α
5
-α
4
不可由α
1
,α
2
,α
3
线性表示,所以α
1
,α
2
,α
3
,α
5
-α
4
线性无关,于是向量组α
1
,α
2
,α
3
,α
5
-α
4
的秩为4.
解析
转载请注明原文地址:https://kaotiyun.com/show/c2R4777K
0
考研数学三
相关试题推荐
设A,B均为四阶方阵,r(A)=3,r(B)=4,其伴随矩阵分别为A*,B*,则r(A*B*)=___________.
设X为随机变量,E(X)=μ,D(X)=σ2,则对任意常数C有().
已知线性方程组有无穷多解,求a,b的值并求其通解。
设向量α=[a1,a2,…,an]T,β=[b1,b2,…,bn]T都是非零向量,满足aTβ=0,记n阶矩阵A=αβT.求A2;
设X的密度为f(χ)=,-∞<χ<+∞求:(1)常数C和X的分布函数F(z),(2)P(0≤X≤1)及Y=e-|X|的密度fY(y).
设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内大于零,并且满足xfˊ(x)=f(x)+x2(a为常数),又曲线y=f(x)与x=1,y=0所围的图形S的面积为2.求函数y=f(x),并问a为何值时,图形S绕x轴旋转一周所得的旋转体的体积最小.
设二维随机变量(X,Y)的概率密度为f(x,y)=一∞<x<+∞,一∞<y<+∞,求常数A及条件概率密度fY|X(y|x).
已知下列非齐次线性方程组:求解方程组(I),用其导出组的基础解系表示其通解;
厂家生产的一种产品同时在两个市场销售,售价分别为p1和p2,销售量分别为q1和q2,需求函数分别为q1=24-0.2p1和q2=10-0.05p2,总成本函数为C=35+40(q1+q2).试问:厂家如何确定两个市场的售价,能使其获得的总利润最大?最大总
设A是一个n阶方阵,满足A2=A,R(A)=r,且A有两个不同的特征值.试证A可对角化,并求对角阵A;
随机试题
多媒体技术的最直接、最简单的体现是()。
安全接地电阻值要求小于
以下关于细菌内毒素的说法正确的是
突发重大动物疫情应急组织体系不包括
关于复验,以下表述正确的是( )。
在下列情况下可以汇集成检验批的是()。
暂缓通过年审的导游人员,通过()后,方可重新上岗。
县级以上人民政府旅游主管部门有权对下列事项实施监督检查()。
从所给的四个选项中,选择最合适的一个填入问号处,使之呈现一定的规律性:
A、30B、20C、60D、0C选项均为数字,因此听音时应关注与数字相关的信息。题目问女士每周抽多少根烟。会话中,男士问女士是否把自己描述为重度吸烟者。女士回答说,她不会把每周抽3包20支装的烟称之为重度抽烟。由此可见,女士每周抽20x3=60根,
最新回复
(
0
)