首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶矩阵,λ1和λ2是A的两个不同的特征值.x1,x2是分别属于λ1和λ2的特征向量,试证明:x1+x2不是A的特征向量.
设A为n阶矩阵,λ1和λ2是A的两个不同的特征值.x1,x2是分别属于λ1和λ2的特征向量,试证明:x1+x2不是A的特征向量.
admin
2018-08-22
74
问题
设A为n阶矩阵,λ
1
和λ
2
是A的两个不同的特征值.x
1
,x
2
是分别属于λ
1
和λ
2
的特征向量,试证明:x
1
+x
2
不是A的特征向量.
选项
答案
反证法 假设x
1
+x
2
是A的特征向量,则存在数λ,使得A(x
1
+x
2
)=λ(x
1
+x
2
),则 (λ-λ
1
)x
1
+(λ—λ
2
)x
2
=0. 因为λ
1
≠λ
2
,所以x
1
,x
2
线性无关,则[*]矛盾.故x
1
+x
2
不是A的特征向量.
解析
转载请注明原文地址:https://kaotiyun.com/show/FFj4777K
0
考研数学二
相关试题推荐
ln3
设f(x)在[a,b]上有定义,M>0且对任意的x,y∈[a,b],有|f(x)-f(y)|≤M|x-y|k.证明:当k>0时,f(x)在[a,b]上连续;
设k>0,讨论常数k的取值,使f(x)=xlnx+k在其定义域内没有零点、有一个零点及两个零点.
设a>0,函数f(x)在[0,+∞)上连续有界,证明:微分方程y’+ay=f(x)的解在[0,+∞)上有界.
设y1=ex,y2=x2为某二阶线性齐次微分方程的两个特解,则该微分方程为__________.
函数(其中C是任意常数)对微分方程而言,()
设方阵A1与B1合同,A2与B2合同,证明:合同
设A,B,C为常数,B2一AC>0,A≠0.u(x,y)具有二阶连续偏导数,试证明:必存在非奇异线性变换ξ=λ1x+y,η=λ2x+y(λ1,λ2为常数),
已知线性方程组的通解为[2,1,0,1]T+k[1,一1,2,0]T.记αj=[a1j,a2j,a3j,a4j]T,j=1,2,…,5.问:(1)α4能否由α1,α2,α3,α5线性表出,说明理由;(2)α4能否由α1,α2,α
设A为n阶方阵(n≥2),A*是A的伴随矩阵,试证:当r(A)<n一1时,r(A*)=0.
随机试题
吸收进行的依据是混合气体中各组分的浓度不同。
提出社会交换论的学者是()
Sorry,Idon’tknowheisafriendof______.
菌斑控制良好的指标是
女性患者,15岁,因急性阑尾炎住院准备手术治疗,其术前准备错误的是
A.药用炭B.碳酸氢钠C.甲丙氨酯D.酚磺乙胺E.甘油
某路基工程中对土样进行液塑限试验.请回答以下问题。以下关于试验过程的说法,正确的有()。
基金管理公司成功运作并获取较高利润回报的关键在于分散投资。( )
阅读以下说明,回答问题1~4,将解答填入对应的解答栏内。[说明]现有如下关系模式:R(A#,B#,C,DE),其中,A#,B#为组合键,R上存在的函数依赖有(A#,B#)→E,B#→C,C→D
TheGreatNewspaperWarUpuntilabout100yearsago,newspapersintheUnitedStatesappealedonlytothemostseriousread
最新回复
(
0
)