设f(x)为连续函数,证明:∫0πf(sinx)dx=π/2∫0πf(sinx)dx=π∫0π/2f(sinx)dx;证明:∫02πf(|sinx|)dx=4∫0π/2f(sinx)dx;求∫0π2xsinx/(3sin2x+4cos2x)dx.

admin2022-10-25  36

问题 设f(x)为连续函数,证明:∫0πf(sinx)dx=π/2∫0πf(sinx)dx=π∫0π/2f(sinx)dx;证明:∫0f(|sinx|)dx=4∫0π/2f(sinx)dx;求∫0π2xsinx/(3sin2x+4cos2x)dx.

选项

答案[*]

解析
转载请注明原文地址:https://kaotiyun.com/show/FIC4777K
0

随机试题
最新回复(0)