首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设四元齐次线性方程组(1)为 而已知另一四元齐次线性方程组(2)的一个基础解系为 α1=(2,—1,a+2,1)T,α2=(—1,2,4,a+8)T。 当a为何值时,方程组(1)与(2)有非零公共解?并求出所有非零公共解。
设四元齐次线性方程组(1)为 而已知另一四元齐次线性方程组(2)的一个基础解系为 α1=(2,—1,a+2,1)T,α2=(—1,2,4,a+8)T。 当a为何值时,方程组(1)与(2)有非零公共解?并求出所有非零公共解。
admin
2018-12-29
35
问题
设四元齐次线性方程组(1)为
而已知另一四元齐次线性方程组(2)的一个基础解系为
α
1
=(2,—1,a+2,1)
T
,α
2
=(—1,2,4,a+8)
T
。
当a为何值时,方程组(1)与(2)有非零公共解?并求出所有非零公共解。
选项
答案
设η是方程组(1)与(2)的非零公共解,则 η=k
1
β
1
+k
2
β
2
=l
1
α
1
+l
2
α
2
,其中k
1
,k
2
与l
1
,l
2
均是不全为0的常数。 由k
1
β
1
+k
2
β
2
—l
1
α
1
+l
2
α
2
=0,得齐次方程组 [*] 对方程组(3)的系数矩阵作初等行变换,有 [*] 当a≠—1时,方程组(3)的系数矩阵变为[*]。 可知方程组(3)只有零解,即k
1
=k
2
=l
1
=l
2
=0,于是η=0,不合题意。 当a= —1时,方程组(3)系数矩阵变为[*], 解得k
1
=l
1
+4l
2
,k
2
=l
1
+7l
2
。 于是η=(l
1
+4l
2
)β
1
+(l
1
+7l
2
)β
2
=l
1
α
1
+l
2
α
2
。 所以当a= —1时,方程组(1)与(2)有非零公共解,且公共解是 l
1
(2,—1,1,1)
T
+l
2
(—1,2,4,7)
T
,l
1
,l
2
为任意常数。
解析
转载请注明原文地址:https://kaotiyun.com/show/FXM4777K
0
考研数学一
相关试题推荐
设方程组每一个方程都表示一个平面,若系数矩阵的秩为3,则三平面的关系是__________.
设随机变量(X,Y)的分布律为已知事件{X=0}与{X+Y=2}独立,则a,b分别为()
函数在区间[0,2]上的最大值是_____,最小值是________.
设f(x)在(-∞,+∞)连续,存在极限f(x)=B.证明:(I)设A<B,则对μ∈(A,B),ξ∈(-∞,+∞),使得f(ξ)=μ;(Ⅱ)f(x)在(-∞,+∞)上有界.
设X,Y为两个随机变量,P{X≤1,Y≤1}=,P{X≤1}=P{Y≤1}=,则P(min{X,Y}≤1}=()
设函数z=f(x,y)具有二阶连续偏导数,且试证明:对任意的常数c,f(x,y)=c为一直线的充分必要条件是(f’y)2·f’’xx一2f’x·f’y·f’’xy+(f’x)2·f’yy=0.
求直线的公垂线方程.
已知k(1,0,2)+k(0,1,-1)T是齐次方程组Ax=0的通解,又Aα+3α=0,其中β=(1,2,3)T,求矩阵A.
设事件A发生的概率是事件B发生概率的3倍,A与B都不发生的概率是A与B同时发生概率的2倍。若P(B)=,则P(A一B)=______.
证明:当x≥0时,f(x)=∫0x(t-t2)sin2ntdt的最大值不超过·
随机试题
WhenIwaswalkingdownthestreettheotherday,Ihappenedto【C1】______asmallbrownleatherpurselyingonthesidewalk.I【C2
患者女性,30岁,撞击后致单纯左肩关节前方脱位,1小时后来医院就诊,X线片未见合并骨折征象。此时应首先采取哪种治疗措施
A.联苯胺B.氯甲醚C.石棉D.砷E.焦炉逸散物我国职业病名单中,列入职业肿瘤,可引起间皮瘤的毒物是
在预防唇腭裂发生的措施中,哪项是错误的
肛门周围脓肿的主要症状是
区域火灾风险评估的评估内容有哪些?
2014年10月20日,甲向乙购买一批原材料,价款为30万元。因乙欠丙30万元,故甲与乙约定由乙签发一张甲为付款人、丙为收款人的商业汇票。乙于当日依约签发汇票并交付给丙,该汇票上未记载付款日期。2014年11月15日,丙向甲提示付款时,甲以乙交货不符合合
随着儿童逐渐长大,他们往往在不考虑行为的外部结果的情况下,采纳身边他人优先考虑的事情和价值标准作为自己的接受他人所推崇的行为,这种现象称为动机的外化。()
近来,微博上流行一句“是中国人就转”的口号,这是用一面澎湃激昂的民族情怀大旗,迎风一展,遮住大众的眼睛,眼花缭乱间,既剥夺民众独立思考的能力,又________他人自由的意志。爱国主义是其廉价外衣,使人跟风盲从是其内在属性,看似强大逻辑的背后,实则是批判的
单纯涎石摘除术适用于()。
最新回复
(
0
)