首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设四元齐次线性方程组(1)为 而已知另一四元齐次线性方程组(2)的一个基础解系为 α1=(2,—1,a+2,1)T,α2=(—1,2,4,a+8)T。 当a为何值时,方程组(1)与(2)有非零公共解?并求出所有非零公共解。
设四元齐次线性方程组(1)为 而已知另一四元齐次线性方程组(2)的一个基础解系为 α1=(2,—1,a+2,1)T,α2=(—1,2,4,a+8)T。 当a为何值时,方程组(1)与(2)有非零公共解?并求出所有非零公共解。
admin
2018-12-29
24
问题
设四元齐次线性方程组(1)为
而已知另一四元齐次线性方程组(2)的一个基础解系为
α
1
=(2,—1,a+2,1)
T
,α
2
=(—1,2,4,a+8)
T
。
当a为何值时,方程组(1)与(2)有非零公共解?并求出所有非零公共解。
选项
答案
设η是方程组(1)与(2)的非零公共解,则 η=k
1
β
1
+k
2
β
2
=l
1
α
1
+l
2
α
2
,其中k
1
,k
2
与l
1
,l
2
均是不全为0的常数。 由k
1
β
1
+k
2
β
2
—l
1
α
1
+l
2
α
2
=0,得齐次方程组 [*] 对方程组(3)的系数矩阵作初等行变换,有 [*] 当a≠—1时,方程组(3)的系数矩阵变为[*]。 可知方程组(3)只有零解,即k
1
=k
2
=l
1
=l
2
=0,于是η=0,不合题意。 当a= —1时,方程组(3)系数矩阵变为[*], 解得k
1
=l
1
+4l
2
,k
2
=l
1
+7l
2
。 于是η=(l
1
+4l
2
)β
1
+(l
1
+7l
2
)β
2
=l
1
α
1
+l
2
α
2
。 所以当a= —1时,方程组(1)与(2)有非零公共解,且公共解是 l
1
(2,—1,1,1)
T
+l
2
(—1,2,4,7)
T
,l
1
,l
2
为任意常数。
解析
转载请注明原文地址:https://kaotiyun.com/show/FXM4777K
0
考研数学一
相关试题推荐
已知A,B均为n阶正定矩阵,则下列矩阵中不是正定矩阵的是()
从1,2,3,4中任取一个数,记为X,再从1,…,X中任取一个数,记为Y,则P{Y=2}=________.
设X1,X2,X3,X4是取自总体N(0,4)的简单随机样本,记X=a(X1=2X2)2+b(3X3-4X4)2,其中a,b为常数,已知X~χ2(n)分布,则()
设随机变量X与Y相互独立,且X的分布函数为FX(z),Y的概率分布为P{Y=0}P{Y=1}=,则Z=XY的分布函数FZ(z)为()
设z=z(x,y)是由方程x+2y+z-确定的隐函数,则dz=_______.
求下列极限f(x):(I)f(x)=(Ⅱ)f(x)=
A=,E为3阶单位矩阵,B=(A-E)-1(A+E),则(B-E)-1=_____.
在一系列的独立试验中,每次试验成功的概率为p,记事件A=“第3次成功之前失败4次”,B=“第10次成功之前至多失败2次”,则P(A)=_______;P(B)=______.现进行n次重复试验,则在没有全部“失败”的条件下,“成功”不止一次的概率q=___
求极限
设随机变量X的绝对值不大于1,在事件{-1<X<1)出现的条件下,X在(-1,1)内任一子区间上取值的条件概率与该子区间的长度成正比.试求:X取负值的概率p.
随机试题
绿原属于下列哪个文学流派()
爱国主义以________和爱自己的国家为基本内容。
与强直性脊椎炎最具相关性的选项是
房地产经纪机构的经营模式可分为()等几类。
某建筑公司兼营运输业务,2014年发生的业务如下:(1)与甲建筑公司签订一项建筑承包合同,金额3500万元,又将该工程的一部分分包给乙建筑公司签订合同,分包金额1000万元;(2)3月31日,与丙企业签订一协议,公司承租丙企业设备1台,
推动罗马法由公民法发展到万民法的主要动力是()。
数据11、11、11、11、14、14、14、17、17、18的中位数是
在SQLServer2008中,若希望数据库用户ACCT具有创建数据库对象的权限,较为适合的实现方法是()。
Writeanessayofnolessthan200wordsonthetopicgivenbelow.UsetheproperspaceonyourANSWERSHEETII.TOPIC:Ify
Nowonlineprovisionistransforminghighereducation,givingthebestuniversitiesachancetowidentheircatch,openingnewo
最新回复
(
0
)