首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设四元齐次线性方程组(1)为 而已知另一四元齐次线性方程组(2)的一个基础解系为 α1=(2,—1,a+2,1)T,α2=(—1,2,4,a+8)T。 当a为何值时,方程组(1)与(2)有非零公共解?并求出所有非零公共解。
设四元齐次线性方程组(1)为 而已知另一四元齐次线性方程组(2)的一个基础解系为 α1=(2,—1,a+2,1)T,α2=(—1,2,4,a+8)T。 当a为何值时,方程组(1)与(2)有非零公共解?并求出所有非零公共解。
admin
2018-12-29
54
问题
设四元齐次线性方程组(1)为
而已知另一四元齐次线性方程组(2)的一个基础解系为
α
1
=(2,—1,a+2,1)
T
,α
2
=(—1,2,4,a+8)
T
。
当a为何值时,方程组(1)与(2)有非零公共解?并求出所有非零公共解。
选项
答案
设η是方程组(1)与(2)的非零公共解,则 η=k
1
β
1
+k
2
β
2
=l
1
α
1
+l
2
α
2
,其中k
1
,k
2
与l
1
,l
2
均是不全为0的常数。 由k
1
β
1
+k
2
β
2
—l
1
α
1
+l
2
α
2
=0,得齐次方程组 [*] 对方程组(3)的系数矩阵作初等行变换,有 [*] 当a≠—1时,方程组(3)的系数矩阵变为[*]。 可知方程组(3)只有零解,即k
1
=k
2
=l
1
=l
2
=0,于是η=0,不合题意。 当a= —1时,方程组(3)系数矩阵变为[*], 解得k
1
=l
1
+4l
2
,k
2
=l
1
+7l
2
。 于是η=(l
1
+4l
2
)β
1
+(l
1
+7l
2
)β
2
=l
1
α
1
+l
2
α
2
。 所以当a= —1时,方程组(1)与(2)有非零公共解,且公共解是 l
1
(2,—1,1,1)
T
+l
2
(—1,2,4,7)
T
,l
1
,l
2
为任意常数。
解析
转载请注明原文地址:https://kaotiyun.com/show/FXM4777K
0
考研数学一
相关试题推荐
已知每次试验“成功”的概率为夕,现进行n次独立试验,则在没有全部“失败”的条件下,“成功”不止一次的概率为_______.
函数在区间[0,2]上的最大值是_____,最小值是________.
对任意两个随机变量X和y,若E(XY)=E(X)E(Y),则()
设随机变量X的概率密度函数,则Y=3X的概率密度为()
设z=z(x,y)是由方程Ф(cx-az,cy-bz)=0确定的隐函数,其中Ф(u,v)具有连续偏导数,则=______.
证明:正项级数与数列{(1+a1)(1+a2).….(1+n)}是同敛散的.
设f(x)可导,且它的任何两个零点的距离都大于某一个正数(称零点是孤立的),g(x)连续,且当f(x)≠0时g(x)可导,令φ(x)=g(x)|f(x)|,讨论φ(x)的可导性.
求f(x,y)=(x一6)(y+8)在(x,y)处的最大方向导数g(x,y),并求g(x,y)在区域D={(x,y):x2+y2≤25)上的最大值、最小值.
假设随机变量X和Y的联合概率密度为求X和Y的联合分布函数F(x,y);
设η*是非齐次方程组AX=b的一个特解,ξ1,ξ2,…,ξn-r是对应齐次方程组AX=0的基础解系.令η0=η*,η1=ξ1+η*,η2=ξ2+η*,…,ηn-r=ξn-r+η*.证明:非齐次方程的任一解η都可表示成η=μ0η0+μ1η1+μ2η2+…+μ
随机试题
互购贸易作为一种对销贸易,下列符合其特点的是()
试求由抛物线(y-2)2=x-1和与抛物线相切于纵坐标y0=3处的切线以及x轴所围成图形面积。
中风闭证的病机是
受益权
图示结构的弯矩图正确的是()。
国际收支平衡表“资本项目”是指因资本输出和输入而产生的资产与负债的增减项目,如下项目中属于资本项目的有()。
设有n个进程共享一个互斥段,如果:(1)每次只允许一个进程进入互斥段;(2)每次最多允许m个进程(m≤n)同时进入互斥段。试问:所采用的信号量初值是否相同?信号量值的变化范围如何?
昆体良是西方世界第一个专门论述教育问题的思想家。
Nearlytwo-thirdsofbusinessesintheUKwanttorecruitstaffwithforeignlanguageskills.Frenchisstillthemosthighlypr
A、BookingatheatreticketB、ReservingaroomC、BookinganairticketD、ReservingaseatC根据文中开头提示信息“Willyoubookaplaneticke
最新回复
(
0
)