首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设四元线性方程组(1)为又已知齐次线性方程组(2)的通解为k1(0,1,1,0)T+k2(—1,2,2,1)T。 求方程组(1)的基础解系。
设四元线性方程组(1)为又已知齐次线性方程组(2)的通解为k1(0,1,1,0)T+k2(—1,2,2,1)T。 求方程组(1)的基础解系。
admin
2019-03-23
52
问题
设四元线性方程组(1)为
又已知齐次线性方程组(2)的通解为k
1
(0,1,1,0)
T
+k
2
(—1,2,2,1)
T
。
求方程组(1)的基础解系。
选项
答案
方程组(1)的同解方程组为[*]基础解系为ξ
1
=(0,0,1,0)
T
,ξ
2
=(—1,1,0,1)
T
,故通解为k
1
(0,0,1,0)
T
+k
2
(—1,1,0,1)
T
,其中k
1
,k
2
为任意常数。
解析
转载请注明原文地址:https://kaotiyun.com/show/FXV4777K
0
考研数学二
相关试题推荐
设α,β都是n维列向量时,证明①αβT的特征值为0,0,…,0,βTα.②如果α不是零向量,则α是αβT的特征向量,特征值为βTα.
A=,r(A)=2,则()是A*X=0的基础解系.
设①a,b取什么值时存在矩阵X,满足AX-CX=B?②求满足AX-CX=B的矩阵X的一般形式.
设(Ⅰ)和(Ⅱ)是两个四元齐次线性方程组,(Ⅰ)为(Ⅱ)有一个基础解系(0,1,1,0)T,(-1,2,2,1)T.求(Ⅰ)和(Ⅱ)的全部公共解.
A是n阶矩阵,数a≠b.证明下面3个断言互相等价:(1)(A-aE)(A-bE)=0.(2)r(A-aE)+r(A-bE)=n.(3)A相似于对角矩阵,并且特征值满足(λ-a)(λ-b)=0.
设A是正定矩阵,B是实对称矩阵,证明AB相似于对角矩阵.
设f(x)在[a,b]上可导f’(x)+[f(x)]2一∫axf(t)dt=0,且∫a-bf(t)dt=0.证明:∫axf(t)dt在(a,b)的极大值不能为正,极小值不能为负;
设函数f(x,y)=讨论f(x,y)在(0,0)点的可微性.
已知曲线L的方程406过点(一1,0)引L的切线,求切点(x0,y0),并写出切线的方程;
已知曲线L的方程406讨论L的凹凸性;
随机试题
在开庭审理过程中,公诉人用多媒体方式出示了被告人留在犯罪现场的鞋子,那么这个证据是什么证据?()
血小板增多见于
重症水痘可发生
关于在城市规划区内以出让方式取得国有土地使用权,下列说法不正确的是:()
国际机电工程项目合同风险中,属于环境风险因素的有()。
在少数民族节庆中过十月节,每天有近百张桌子连在一起举行盛大街心宴的是()。
大数定理是指在随机试验中,每次出现的结果不同,但是大量重复试验出现的结果的平均值却几乎总是接近于某个确定的值,即该事件发生的概率。根据上述定义,下列事件能够用大数定理解释的是()。
下列不是唐玄宗组织编撰的是()。
健康取决于良好的食物,清新的空气和充足的睡眠。
Thenumberofexecutivebranchemployeesretiringthisfiscalyear,whichendsnextmonth,isontracktobenearlytwicetheto
最新回复
(
0
)