首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知α1,α2,α3是非齐次线性方程组Ax=b的三个不同的解,那么向量α1一α2,α1+α2一2α3,(α2一α1),α1一3α2+2α3中,是方程组Ax=0解向量的共有( )
已知α1,α2,α3是非齐次线性方程组Ax=b的三个不同的解,那么向量α1一α2,α1+α2一2α3,(α2一α1),α1一3α2+2α3中,是方程组Ax=0解向量的共有( )
admin
2017-12-29
55
问题
已知α
1
,α
2
,α
3
是非齐次线性方程组Ax=b的三个不同的解,那么向量α
1
一α
2
,α
1
+α
2
一2α
3
,
(α
2
一α
1
),α
1
一3α
2
+2α
3
中,是方程组Ax=0解向量的共有( )
选项
A、4
B、3
C、2
D、1
答案
A
解析
由Aα
i
=b(i=1,2,3)有
A(α
1
一α
2
)=Aα
1
—Aα
2
=b一b=0,
A(α
1
+α
2
—2α
3
)=Aα
1
+Aα
2
—2Aα
3
=b+b一2b=0,
A(α
1
—3α
2
+2α
3
)=Aα
1
—3Aα
2
+2Aα
3
=b一3b+2b=0,
即α
1
一α
2
,α
1
+α
2
一2α
3
,
(α
2
一α
1
),α
1
一3α
2
+2α
3
均是齐次方程组Ax=0的解。
所以应选A。
转载请注明原文地址:https://kaotiyun.com/show/uFX4777K
0
考研数学三
相关试题推荐
设矩阵有三个线性无关特征向量,λ=2是A的二重特征值,试求可逆阵P,使得P-1AP=A,A是对角阵.
设g(x)=,f(x)=∫0xg(t)dt.(1)证明:y=f(x)为奇函数,并求其曲线的水平渐近线;(2)求曲线y=f(x)与它所有水平渐近线及Oy轴围成图形的面积.
函数y=lnx在区间[1,e]上的平均值为________.
假设某季节性商品,适时地售出1千克可以获利s元,季后销售每千克净亏损t元。假设一家商店在季节内该商品的销售量X(千克)是一随机变量,并且在区间(a,b)内均匀分布。问季初应安排多少这种商品,可以使期望销售利润最大?
用切比雪夫不等式确定,掷一均质硬币时,需掷多少次,才能保证‘正面’出现的频率在0.4至0.6之间的概率不小于0.9.
设矩阵,且|A|=一1,A的伴随矩阵A*有特征值λ0,属于λ0的特征向量为α=[-1,-1,1]T,求a,b,c及λ0的值.
在球面x2+y2+z2=5R2(x>0,y>0,z>0)上,求函数f(x,y,z)=lnx+lny+3lnz的最大值,并利用所得结果证明不等式
设向量组α1=[a11…a21,an1]T,α2=[a12,a22,…,an2]T,…,αs=[a1s,a2s,…ans]T.证明:向量组α1,α2,…,αs线性相关(线性无关)的充要条件是齐次线性方程组有非零解(有唯一零解).
设A为n阶实对称矩阵,秩(A)=n,Aij是A=(aij)n×n一中元素aij的代数余子式(i,j=1,2,…,n),二次型f(x1,x2,…,xn)=记X一(x1,x2,…,xn)T,把f(x1,x2,…,xn)写成矩阵形式,并证明二次型f(x)的
设A为三阶实对称矩阵,且存在可逆矩阵P=,使得p-1AP=.又A的伴随矩阵A*有特征值λ0,λ0所对应的特征向量为α=[2,5,一1]T.(1)求λ0的值;(2)计算(A*)-1;(3)计算行列式|A*+E|.
随机试题
在患传染性单核细胞增多症患者的血涂片中可发现较多的异常细胞是A.大单核细胞B.中性粒细胞中毒变性C.幼稚单核细胞D.异型淋巴细胞E.幼稚粒细胞
碘解磷定与氯解磷定在临床上有何区别?
根据《测绘作业人员安全规范》,下列关于测绘内业作业场所安全说法管理的说法中,正确的有()。
下列会计科目中,贷记“银行存款”,同时借记的可能有()。
下列各项中,属于私募基金信息披露中的重大事项的是()。
所有湖南来北京的打工人员,都办理了暂住证;所有办理了暂住证的人员,都获得了就业许可证;有些湖南来北京的打工人员当上了门卫;有些业余武术学校的学员也当上了门卫;所有的业余武术学校的学员都未获得就业许可证。如果上述断定都是真的,则除了以下哪项,其余的
沿江高铁某段由西向东设置了五个站点,已知:(1)扶夷站在灏韵站之东、胡瑶站之西,并与胡瑶站相邻;(2)韭上站与银岭站相邻。如果灏韵站与银岭站相邻,则可以得出:
A、 B、 C、 D、 D
下列程序的运行结果是______。#include<string.h>char*ss(char*s){returns+strlen(s)/2;}main(){char*p,*str="abcd
在下图中,与查询设计器的筛选标签中所设置的筛选功能相同的表达式是()。
最新回复
(
0
)