首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内可导,且f(0)=0,f(1)=。 证明存在ξ∈(0,),η∈(,1),使得f’(ξ)+f’(η)=ξ2+η2。[img][/img]
设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内可导,且f(0)=0,f(1)=。 证明存在ξ∈(0,),η∈(,1),使得f’(ξ)+f’(η)=ξ2+η2。[img][/img]
admin
2020-03-16
45
问题
设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内可导,且f(0)=0,f(1)=
。
证明存在ξ∈(0,
),η∈(
,1),使得f’(ξ)+f’(η)=ξ
2
+η
2
。[img][/img]
选项
答案
令[*],则F(1)=F(0)=0。 在区间[*]和[*]上分别应用拉格朗日中值定理, [*] 将上面两个等式相加 [*] 即 F’(ξ)+F’(η)=f’(ξ)一ξ
2
+f’(η)一η
2
=0, 整理后得 f’(ξ)+f’(η)=ξ
2
+η
2
。
解析
转载请注明原文地址:https://kaotiyun.com/show/Fb84777K
0
考研数学二
相关试题推荐
求下列各微分方程的通解或在给定初始条件下的特解
设三阶实对称矩阵A的秩为2,λ1=λ2=6是A的二重特征值,若α1=(1,1,0)T,α2=(2,1,1)T,α3=(-1,2,-3)T都是A的属于特征值6的特征向量.(1)求A的另一特征值和对应的特征向量;(2)求矩阵A.
设4元线性方程组(Ⅰ)为,又已知某齐次线性方程组(Ⅱ)的通解为k1(0,1,1,0)+k2(-1,2,2,1).(1)求线性方程组(Ⅰ)的基础解系;(2)问线性方程组(Ⅰ)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解,若没有,
设α=(a1,a2,…,an)T是Rn中的非零向量,方阵A=ααT.(1)证明:对正整数m,存在常数t,使Am=tm-1A,并求出t;(2)求一个可逆矩阵P,使P-1AP=∧为对角矩阵.
设在区间[e,e2]上,数p,q满足条件px+q≥lnx,求使得积分I(p,q)=(px+q—lnx)dx取得最小值的p,q的值.
求曲线y=与χ轴围成的区域绕χ轴、y轴形成的几何体体积.
[2010年]设A为四阶实对称矩阵,且A2+A=0,若A的秩为3,则A相似于().
[2017年]已知平面区域D={(x,y)∣x2+y2≤2y),计算二重积分(x+1)2dxdy.
[2011年]设平面区域D由直线y=x,圆x2+y2=2y及y轴所围成,如图1.5.2.2所示,则二重积分xydσ=_________.
[2010年]设y1,y2是一阶线性非齐次微分方程y′+P(x)y=q(x)的两个特解.若常数λ,μ使λy1+μy2是该方程的解,λy1一μy2是该方程对应的齐次方程的解,则().
随机试题
汤显祖是我国明代著名剧作家,《游园》选自他的剧作___________。
调养身体增强体质,提高正气抗邪能力应从哪些方面着手
急性心肌梗塞病人多长时间内不施行择期手术
女性,60岁,糖尿病,口服二甲双胍治疗。空腹血糖6.1mmo|/L,餐后血糖7.2mmol/L,血压130/90mmF{g。某日外出突然出现心慌、手抖、头昏眼花、全身无力。最佳的处理方法是()。
风险是银行体系不可消除的外部因素,银行机构正是通过管理和经营风险获得收益。()
所得税是对所有以所得为课税对象的税种的总称,其特点包括()。
客观唯心主义把世界看作是彼此孤立,静止不变的,或者把变化看作是某种外力作用而产生的量变。()
设随机变量X服从(-a,a)上的均匀分布(a>0),且已知P(X>1)=1/3,则a=_______,D(x)=_______。
设有栈S和队列Q,初始状态均为空。首先依次将A,B,C,D,E,F入栈,然后从栈中退出三个元素依次入队,再将X,Y,Z入栈后,将栈中所有元素退出并依次入队,最后将队列中所有元素退出,则退队元素的顺序为()。
Thereasonthatwaterproblemwillbecomemoreandmoreseriousis______.Thesecondwayofsolvingwaterpollutionproblemis
最新回复
(
0
)