首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A和B都是m×n实矩阵,满足r(A+B)=n,证明ATA+BTB正定.
设A和B都是m×n实矩阵,满足r(A+B)=n,证明ATA+BTB正定.
admin
2018-11-20
49
问题
设A和B都是m×n实矩阵,满足r(A+B)=n,证明A
T
A+B
T
B正定.
选项
答案
用正定的定义证明. 显然A
T
A,B
T
B都是n阶的实对称矩阵,从而A
T
A+B
T
B也是n阶实对称矩阵. 由于r(A+B)=n,n元齐次线性方程组(A+B)X=0没有非零解.于是,当α是一个非零n维实的列向量时,(A+B)α≠0,因此Aα与Bα不会全是零向量,从而α
T
(A
T
A+B
T
B)α=α
T
A
T
Aα+α
T
B
T
Bα=‖Aα‖
2
+‖Bα‖
2
>0.根据定义,A
T
A+B
T
B正定.
解析
转载请注明原文地址:https://kaotiyun.com/show/FfW4777K
0
考研数学三
相关试题推荐
设起点站上车人数X服从参数为λ(λ>0)的泊松分布,每位乘客中途下车的概率为p(0<p<1),且中途下车与否相互独立,以Y表示中途下车人数.求(X,Y)的概率分布.
设A为n阶矩阵,A11≠0.证明:非齐次线性方程组AX=b有无穷多个解的充分必要条件是A*b=0.
设α1,α2,α3,α4为四元非齐次线性方程组BX=b的四个解,其中α1=r(B)=2.(Ⅰ)与(Ⅱ)是否有公共的非零解?若有公共解求出其公共解.
设函数f(x)在[0,+∞)内可导,f(0)=1,且f’(x)+f(x)一证明:当x≥0时,e一x≤f(x)≤1.
设三阶矩阵A=(α,γ1,γ2),B=(β,γ1,γ2),其中α,β,γ1,γ2是三维列向量,且|A|=3,|B|=4,则|5A一2B|=________.
设二次型f(x1,x2,x3)=(a一1)x12+(a一1)x22+2x32+2x1x2(a>0)的秩为2.求a;
质量为lg的质点受外力作用作直线运动,外力和时间成正比,和质点的运动速度成反比,在t=10s时,速度等于50cm/s.外力为39.2cm/s2,问运动开始1min后的速度是多少?
已知A,B为三阶非零方阵,为齐次线性方程组BX=0的3个解向量,且AX=β3有非零解.(1)求a,b的值;(2)求BX=0的通解.
设A=已知线性方程组Ax=b存在两个不同的解。(Ⅰ)求λ,a;(Ⅱ)求方程组Ax=b的通解。
设总体X的概率密度f(x)=其中a是常数,λ>0是未知参数,从总体X中抽取样本X1,X2,…,Xn。求:(Ⅰ)常数a;(Ⅱ)求λ的最大似然估计量。
随机试题
配位滴定中加入缓冲溶液的原因是()。
人体散热效率最高的体表部位是
关于哮病的治疗,古代医家中谁提出“未发以扶正为主,既发以攻邪气为急”的原则
酸枣仁的功效为()。
A、无需经过药品广告审查机关审查B、由发布地省级药品监督管理部门审查C、由发布地省级药品监督管理部门备案D、由发布地工商行政管理部门审查E、由国家药品监督管理部门审查;根据《药品广告审查办法》异地发布药品广告的
商业银行发行次级定期债务,须向()提出申请。
甲商贸有限责任公司的公司章程中规定,公司设监事会,由5名监事组成,且应当有半数以上监事为职工代表。该公司章程的规定符合公司法律制度的规定。()
4/4拍属于()。
任何无法量化及不设定时限的目标都是无效的目标,而任何无效的目标都没有实际操作的方法。因此,详细的职业规划不是无法量化及不设定时限的目标。为了使这个推理正确,必须补充以下哪项作为前提?
Methodsofstudyingvarygreatly;themethodthatworks【C1】______forsomestudentsdoesn’tworkatallforothers.Theonlythin
最新回复
(
0
)