首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶矩阵 (1)求A的特征值和特征向量; (2)求可逆矩阵P,使P一1AP为对角矩阵.
设n阶矩阵 (1)求A的特征值和特征向量; (2)求可逆矩阵P,使P一1AP为对角矩阵.
admin
2019-01-13
26
问题
设n阶矩阵
(1)求A的特征值和特征向量;
(2)求可逆矩阵P,使P
一1
AP为对角矩阵.
选项
答案
(1)1
°
当b≠0时, [*]= [λ一1一(n一1)b][λ一(1一b)]
n一1
,故A的特征值为λ
1
=1+(n一1)b,λ
2
=…=λ
n
= 1一b. 对于λ
1
=1+(n一1)b,设对应的一个特征向量为ξ
1
,则 [*]ξ
1
=[1+(n一1)b]ξ
1
解得ξ
1
=(1,1,…,1)
T
,所以,属于λ
1
的全部特征向量为kξ
1
= k(1,1,…,1)
T
,其中k为任意非零常数. 对于λ
2
=…=λ
n
=1一b,解齐次线性方程组[(1一b)E一A]x=0,由 [*] 解得基础解系为ξ
2
=(1,一1,0,…,0)
T
,ξ
3
=(1,0,一1,…,0)
T
,…,ξ
n
=(1,0,0,…,一1)
T
.故属于λ
2
=…=λ
n
的全部特征向量为 k
2
ξ
2
+k
3
ξ
3
+…+k
n
ξ
n
,其中k
2
,k
3
,…,k
n
为不全为零的任意常数. 2
°
当b=0时,A=E,A的特征值为λ
1
=λ
2
=…=λ
n
=1,任意n维非零列向量均是特征向量. (2)1
°
当b≠0时,A有n个线性无关的特征向量,令矩阵P=[ξ
1
ξ
2
… ξ
n
],则有 P
一1
AP=diag(1+(N一1)b,1 一b,…,1一b). 2
°
当b=0时,A=E,对任意n阶可逆矩阵P,均有P
一1
AP=E.
解析
转载请注明原文地址:https://kaotiyun.com/show/Ffj4777K
0
考研数学二
相关试题推荐
(1987年)设I=tf(tχ)dχ,其中f(χ)连续,S>0,t>0,则I的值【】
(1996年)设函数f(χ)=(1)写出f(χ)的反函数g(χ)的表达式;(2)g(χ)是否有间断点、不可导点,若有,指出这些点.
(1998年)设数列χn与yn满足χnyn=0,则下列断言正确的是【】
(1996年)设函数y=y(χ)由方程2y3-2y2+2χy-χ2=1所确定,试求y=y(χ)的驻点,并判别它是否为极值点.
设A,B,C为常数,B2一AC>0,A≠0.u(x,y)具有二阶连续偏导数,试证明:必存在非奇异线性变换ξ=λ1x+y,η=λ2x+y(λ1,λ2为常数),将方程=0.
|A|是n阶行列式,其中有一行(或一列)元素全是1,证明:这个行列式的全部代数余子式的和等于该行列式的值.
设n阶(n≥3)矩阵,A=,若矩阵A的秩为n—1,则a必为()
已知问λ取何值时,(1)β可由α1,α2,α3线性表出,且表达式唯一;(2)β可由α1,α2,α3线性表出,但表达式不唯一;(3)β不能由α1,α2,α3线性表出.
求函数F(x)=的间断点,并判断它们的类型。
设A=E+αβT,其中α=[a1,a2,…,an]T≠0,β=[b1,b2,…,bn]T≠0,且αTβ=2.(1)求A的特征值和特征向量;(2)求可逆矩阵P,使得P一1AP=A.
随机试题
在中文WindowsXP中,______不是合法的文件名。
下面哪项不是原发性下肢静脉曲张的病因
()通勤的成本和住房消费的成本相对便宜,成为集中居住区的分布地带。
在执行生效的法律文书中,()。
出租汽车经营单位对出租车驾驶员采取单车承包或承租方式运营,出租车驾驶员从事客货营运取得的收入,按“劳务报酬所得”项目征税。()
TrashisthetalkofShanghai.StartingMonday,thecitywillrequireresidentsandbusinessestosorttheirwasteandrecyclabl
Youaregoingtohostaclubreadingsession.Writeanemailofabout100wordsrecommendingabooktotheclubmembers.Yousho
请根据图(A)所示网络结构回答下列问题。如果将192.168.17.128/25划分3个子网,其中第一个子网能容纳50台主机,另外两个子网均能容纳20台主机,要求网络地址从小到大依次分配给3个子网,第2个子网的掩码是________,可用的IP地址段
—Howdoyou_______wegotoBeijingforourholidays?—Ithinkwe’dbetterflythere.It’smuchmorecomfortable.
RoadRageAlltheRageTomanypeopletheterm"RoadRage"describesarelativelymodemconceptofdrivers"gettingworkedu
最新回复
(
0
)