首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶矩阵 (1)求A的特征值和特征向量; (2)求可逆矩阵P,使P一1AP为对角矩阵.
设n阶矩阵 (1)求A的特征值和特征向量; (2)求可逆矩阵P,使P一1AP为对角矩阵.
admin
2019-01-13
44
问题
设n阶矩阵
(1)求A的特征值和特征向量;
(2)求可逆矩阵P,使P
一1
AP为对角矩阵.
选项
答案
(1)1
°
当b≠0时, [*]= [λ一1一(n一1)b][λ一(1一b)]
n一1
,故A的特征值为λ
1
=1+(n一1)b,λ
2
=…=λ
n
= 1一b. 对于λ
1
=1+(n一1)b,设对应的一个特征向量为ξ
1
,则 [*]ξ
1
=[1+(n一1)b]ξ
1
解得ξ
1
=(1,1,…,1)
T
,所以,属于λ
1
的全部特征向量为kξ
1
= k(1,1,…,1)
T
,其中k为任意非零常数. 对于λ
2
=…=λ
n
=1一b,解齐次线性方程组[(1一b)E一A]x=0,由 [*] 解得基础解系为ξ
2
=(1,一1,0,…,0)
T
,ξ
3
=(1,0,一1,…,0)
T
,…,ξ
n
=(1,0,0,…,一1)
T
.故属于λ
2
=…=λ
n
的全部特征向量为 k
2
ξ
2
+k
3
ξ
3
+…+k
n
ξ
n
,其中k
2
,k
3
,…,k
n
为不全为零的任意常数. 2
°
当b=0时,A=E,A的特征值为λ
1
=λ
2
=…=λ
n
=1,任意n维非零列向量均是特征向量. (2)1
°
当b≠0时,A有n个线性无关的特征向量,令矩阵P=[ξ
1
ξ
2
… ξ
n
],则有 P
一1
AP=diag(1+(N一1)b,1 一b,…,1一b). 2
°
当b=0时,A=E,对任意n阶可逆矩阵P,均有P
一1
AP=E.
解析
转载请注明原文地址:https://kaotiyun.com/show/Ffj4777K
0
考研数学二
相关试题推荐
(1998年)设数列χn与yn满足χnyn=0,则下列断言正确的是【】
(1997年)已知y1=χeχ+e2χ,y2=χeχ+e-χ,y3=χeχ+e2χ-e-χ是某二阶线性非齐次微分方程的三个解,求此微分方程.
(1993年)设二阶常系数线性微分方程y〞+αy′+βy=γeχ的一个特解为y=e2χ+(1+χ)eχ,试确定常数α、β、γ,并求该方程的通解.
设函数f(u)在(0,+∞)内具有二阶导数,且z==0.(1)验证f"(u)+=0;(2)若f(1)=0,f’(1)=1,求函数f(u)的表达式.
设A是s×n矩阵,B是A的前m行构成的m×b矩阵,已知A的行向量组的秩为r,证明:r(a)≥r+m一s.
已知α1=[一1,1,a,4]T,α2=[一2,1,5,a]T,α3=[a,2,10,1]T是4阶方阵A的3个不同特征值对应的特征向量,则a的取值为()
设函数f(x)在定义域内可导,y=f(x)的图形如图1—2—2所示,则导函数y=f’(x)的图形为()
设函数f(x)在定义域内可导,y=f(x)的图形如右图所示,则导函数y=f’(x)的图形为()
设有定义在(-∞,+∞)上的函数:则(Ⅰ)其中在定义域上连续的函数是________.
随机试题
我国慢性肾衰竭最常见的病因为
A.温中健脾B.导滞和胃C.疏肝理气,和胃止痛D.疏肝泄热,和胃止痛E.温中散寒,和胃止痛某患者,症见上腹部胀痛,痛连胁肋,生气时胃痛加重。治疗原则为
钢筋混凝土梁在正常使用荷载下,下列叙述是正确的是()。
某水利工程中饱和无黏性土的相对密度为78%,位于地震设防烈度8度地区,水平地震动峰值加速度为0.30g,则液化临界相对密度(Dr)cr和液化判别情况应为下列()项。
有偿使用建设用地分为()等方式获得。
《关于开展治理商业贿赂专项工作的意见》是于()年下发的。
娟娟一闻到百合花的香味,马上说出花的名称。这种心理现象是()。
某保险公司接受了10000辆电动自行车的保险,每辆车每年的保费为12元.若车丢失,则赔偿车主1000元.假设车的丢失率为0.006,对于此项业务,试利用中心极限定理,求保险公司:一年获利润不少于40000元的概率β;
在函数中,可以用auto、extem、register和static这四个关键字中的一个来说明变量的存储类型,如果不说明存储类型,则默认的存储类型是()。
TheEconomistIntelligenceUnit(EIU)earnestlyattemptstomeasurewhichcountrywillprovidethebestopportunitiesforahealth
最新回复
(
0
)