首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶矩阵 (1)求A的特征值和特征向量; (2)求可逆矩阵P,使P一1AP为对角矩阵.
设n阶矩阵 (1)求A的特征值和特征向量; (2)求可逆矩阵P,使P一1AP为对角矩阵.
admin
2019-01-13
45
问题
设n阶矩阵
(1)求A的特征值和特征向量;
(2)求可逆矩阵P,使P
一1
AP为对角矩阵.
选项
答案
(1)1
°
当b≠0时, [*]= [λ一1一(n一1)b][λ一(1一b)]
n一1
,故A的特征值为λ
1
=1+(n一1)b,λ
2
=…=λ
n
= 1一b. 对于λ
1
=1+(n一1)b,设对应的一个特征向量为ξ
1
,则 [*]ξ
1
=[1+(n一1)b]ξ
1
解得ξ
1
=(1,1,…,1)
T
,所以,属于λ
1
的全部特征向量为kξ
1
= k(1,1,…,1)
T
,其中k为任意非零常数. 对于λ
2
=…=λ
n
=1一b,解齐次线性方程组[(1一b)E一A]x=0,由 [*] 解得基础解系为ξ
2
=(1,一1,0,…,0)
T
,ξ
3
=(1,0,一1,…,0)
T
,…,ξ
n
=(1,0,0,…,一1)
T
.故属于λ
2
=…=λ
n
的全部特征向量为 k
2
ξ
2
+k
3
ξ
3
+…+k
n
ξ
n
,其中k
2
,k
3
,…,k
n
为不全为零的任意常数. 2
°
当b=0时,A=E,A的特征值为λ
1
=λ
2
=…=λ
n
=1,任意n维非零列向量均是特征向量. (2)1
°
当b≠0时,A有n个线性无关的特征向量,令矩阵P=[ξ
1
ξ
2
… ξ
n
],则有 P
一1
AP=diag(1+(N一1)b,1 一b,…,1一b). 2
°
当b=0时,A=E,对任意n阶可逆矩阵P,均有P
一1
AP=E.
解析
转载请注明原文地址:https://kaotiyun.com/show/Ffj4777K
0
考研数学二
相关试题推荐
(1997年)设χ→0时,etanχ-eχ与χn是同阶无穷小,则n为【】
(1999年)设A是m×n矩阵,B是n×m矩阵,则
(1995年)设f(χ)和φ(χ)在(-∞,+∞)内有定义,f(χ)为连续函数,且f(χ)≠0,φ(χ)有间断点,则
(1991年)若连续函数f(χ)满足关系式f(χ)=∫02χf()dt+ln2则f(χ)等于
(2003年)y=2χ的麦克劳林公式中χn项的系数是_______.
(1999年)设函数y=y(χ)由方程ln(χ2+y)=χ3y+sinχ眦确定,则=_______.
(1998年)利用代换y=将方程y〞cosχ-2y′sinχ+3ycosχ=eχ化简,并求出原方程的通解.
设向量组(I)与向量组(Ⅱ),若(I)可由(Ⅱ)线性表示,且r(I)=r(Ⅱ)=r,证明:(I)与(Ⅱ)等价.
计算定积分。
设f(χ)=2lnχ,f[φ(χ)=ln(1-lnχ),求φ(z)及其定义域.
随机试题
简述调查人员的三项基本职责。
Themanagerclaimedthathiscompanyhadthe()rightofpublication.
川乌的剧毒成分是
A.抗感染B.剖胸探查C.同定胸壁D.穿刺排气减压E.迅速封闭胸壁伤口开放性气胸的紧急处理应
砌筑拱和拱顶时,必须()。
按照《公路工程国内招标文件范本》的相关规定,投标人的投标文件必须包括()
某二级耐火等级的办公室,建筑高度为24m,其周边布置有多个二级耐火等级的建筑,下列关于该办公建筑与周边建筑物防火间距的做法中,正确的有()。
下列各项中,关于明显微小错报的说法中,不恰当的是()。
2005年5月3日,受中共中央和国务院的委托,中共中央台湾工作办公室、国务院台湾事务办公室主任陈云林宣布,大陆同胞向台湾同胞赠送一对象征和平团结友爱的大熊猫;同时宣布,大陆有关方面将于近期开放大陆居民赴台湾(),扩大开放台湾()准入并对其中
Ifyouwanttoimproveyourchild’sresultsatschool,【T1】______thattheydoplentyofexercise.Scientistshavealreadyshownt
最新回复
(
0
)