首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上连续,任取xi∈[a,b](i=1,2,…,n),任取ki>0(i=1,2,…,n),证明:存在ξ∈[a,6],使得 k1f(x1)+k2f(x2)+…+knf(xn)=(k1+k2+…+kn)f(ξ).
设f(x)在[a,b]上连续,任取xi∈[a,b](i=1,2,…,n),任取ki>0(i=1,2,…,n),证明:存在ξ∈[a,6],使得 k1f(x1)+k2f(x2)+…+knf(xn)=(k1+k2+…+kn)f(ξ).
admin
2018-01-23
71
问题
设f(x)在[a,b]上连续,任取x
i
∈[a,b](i=1,2,…,n),任取k
i
>0(i=1,2,…,n),证明:存在ξ∈[a,6],使得
k
1
f(x
1
)+k
2
f(x
2
)+…+k
n
f(x
n
)=(k
1
+k
2
+…+k
n
)f(ξ).
选项
答案
因为f(x)在[a,b]上连续,所以f(x)在[a,b]上取到最小值m和最大值M, 显然有m≤f(x
i
)≤M(i=1,2,…,n) 注意到k
i
>0(i=1,2,…,n),所以有 k
i
m≤k
i
f(x
i
)≤k
i
M(i=1,2,…,n), 同向不等式相加,得 (k
1
+k
2
+…+k
n
)m≤k
1
f(x
1
)+k
2
f(x
2
)+…+k
n
f(x
n
)≤ (k
1
+k
2
+…+k
n
)M, 即m≤[*]≤M, 由介值定理,存在ξ∈[a,b],使得f(ξ)=[*], 即k
1
f(x
1
)+k
2
f(x
2
)+…+k
n
f(x
n
)=(k
1
+k
2
+…+k
n
)f(ξ).
解析
转载请注明原文地址:https://kaotiyun.com/show/FjX4777K
0
考研数学三
相关试题推荐
设X1,X2,…,Xn为来自总体X一N(μ,σ2)的简单随机样本,记样本方差为S2,则D(S2)______.
设ξ,η是两个相互独立且服从同一分布的随机变量,已知ξ的分布率为P(ξ=i)=,i=1,2,3.又设X=max(ξ,η),Y=min(ξ,η).(I)写出二维随机变量的分布率:(Ⅱ)求随机变量X的数学期望E(X).
设A,B为随机事件,且令求:(I)二维随机变量(X,Y)的概率分布;(Ⅱ)X和Y的相关系数ρXY
若为随机变量X的概率密度函数,则a=______.
设随机变量X的密度函数为fX(x),Y=一2X+3,则Y的密度函数为()
设,B是三阶非零矩阵,且BAT=0则秩r(B)=_________.
设A为三阶实对称矩阵,且存在可逆矩阵P=,使得p-1AP=.又A的伴随矩阵A*有特征值λ0,λ0所对应的特征向量为α=[2,5,一1]T.(1)求λ0的值;(2)计算(A*)-1;(3)计算行列式|A*+E|.
已知an=x2(1一x)ndx,证明级数an收敛,并求这个级数的和.
已知f(x)和g(x)在[a,b]上连续,在(a,b)内具有二阶导数,且在(a,b)内存在相等的最大值,又设f(a)=g(a),f(b)=g(b),试证明:存在ξ∈(a,b)使得f’’(ξ)=g’’(ξ)。
设α1,α2,α3,α4,α5都是四维列向量,A=(α1,α2,α3,α4),非齐次线性方程组Ax=α5有通解kξ+η=k(1,一1,2,0)T+(2,1,0,1)T,则下列关系式中不正确的是()
随机试题
兼补心脾,治疗心脾两虚之不寐,宜选用的药物有
充血性心力衰竭的患儿,如进食不足需要静脉补液,补液量为
存款人因办理日常转账和现金收付,可以在银行开立( )。
纳税人进口自用应税车辆,自()起()日内申报缴纳车辆购置税。
目前我国商业银行个人理财业务服务内容包括()。
X公司执行工业企业会计制度。注册会计师B审计X公司2005年度会计报表时,发现X公司1999年购买的100万元无形资产已超过法律保护期限,并且已不能为企业带来经济利益的无形资产,由于X公司正在报送税务机关确认其损失,因此在会计报表仍然挂有无形资产30万元。
婴幼儿期缺乏()可能导致佝偻病。
“而世之奇伟、瑰怪,非常之观,常在于险远,而人之所罕至焉,故非有志者不能至也。”这句话告诉我们,广大青年在改革创新的实践中要做到()
•Readthefollowingarticleaboutknowledgeacquisitionandthequestionsontheoppositepage.•Foreachquestion15-20,marko
TheWriter’sLifeAsurveyofBritain’syouthfoundthatmanyaspire(渴望)tobecomewriters.Theyclearlydon’tknowhowharditi
最新回复
(
0
)